

Master Thesis

Choosing the right framework for Android development:

which mobile development frameworks are chosen and

why?

Author: Ashwin Banwarie

Student number: 2509037

Email: a.banwarie@student.vu.nl

Study: Information Sciences

Supervisor: Dr. Sieuwert van Otterloo

Second reader: Dr. Ivano Malavolta

Date of submission: July 15, 2022

ii

Abstract. In recent years, the use of apps has grown significantly. This demands

a fast time to market for mobile apps. Mobile developers can choose different

strategies to develop mobile apps. For instance, developers for the Android plat-

form can develop apps in Android native, React Native, Flutter, Xamarin, etcet-

era. Since every framework has advantages and disadvantages, it is challenging

for developers to select the most suitable framework. Research has been con-

ducted to gain insight into the current ratio of the frameworks used in the Google

Play Store. In addition, a survey and interviews were conducted with various de-

velopers. This research indicated that 74.4% of the apps are developed in Android

native, and 25.6% are developed in cross-platform frameworks. The results also

showed that Android native and Flutter are the most popular frameworks. Con-

sidering the strengths and weaknesses, it can be concluded that if performance is

the most crucial aspect for the user, then apps should be developed in Android

native. The user receives the best UX/UI, and the most complex app features can

also be used. If the user experience is not the most crucial factor, Flutter is the

best choice for developing a mobile app. In terms of performance and UX/UI,

Flutter is close to native. In addition, there is a shorter development time, which

means that the development costs are much lower than Android native and the

other frameworks. There is also the possibility to develop apps for multiple plat-

forms such as Android, iOS, Web, Desktop, etcetera. It is expected that Android

native will remain the largest in the coming years. However, the differences are

becoming smaller as the cross-platform frameworks are continuously improving,

and the popularity of cross-platform frameworks, such as Flutter and React Na-

tive, are increasing.

Keywords: Android development, Google Play Store, Flutter, React Native,

Xamarin.

iii

Table of Contents

List of Figures ... v

List of Tables ... vi

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Problem definition .. 1

1.3 Research question ... 2

1.4 Scientific and practical contribution ... 3

2 Related literature ... 3

3 Research strategies and research methods .. 4

3.1 Quantitative descriptive research .. 4

3.2 Quantitative survey and qualitative interviews 5

4 Results of RQ1 ... 7

4.1 Type of frameworks used in Google Play Store 7

4.2 Type of frameworks in relation to the different categories 8

4.3 Relationship between app downloads and type of frameworks 9

4.4 Relationship between app ratings and type of frameworks 10

5 Results of RQ2 ... 11

5.1 Rating of various frameworks ... 11

5.2 Positive and negative experience with various frameworks 13

5.3 Processes before choosing a framework ... 14

5.4 Most important deciding factors when choosing a framework 14

5.5 Impact of frameworks on the product and development process 15

Impact of various frameworks on the product. ... 15

Impact of various frameworks on the development process. 18

5.6 Purposes of using the various frameworks .. 21

6 Strengths and weaknesses of the various frameworks 22

7 Discussion ... 25

7.1 Implications .. 25

7.2 Research limitations .. 26

7.3 Recommendations ... 27

iv

7.4 Experiences with AndroZoo ... 27

8 Conclusion .. 27

8.1 Mobile development frameworks used in the Google Play Store 27

8.2 Deciding factors when considering a mobile development framework 28

References ... 29

Appendix 1 Package name, SHA number, and APK download 33

Appendix 2 Example of recognition method .. 34

Appendix 3 Packages ... 35

Appendix 4 GitHub stars ... 37

Appendix 5 Medium stories ... 39

Appendix 6 Stackoverflow ... 41

Appendix 7 Semi-structured interview ... 42

Appendix 8 Survey ... 43

v

List of Figures

Fig. 1. Satisfaction, interest, usage, and awareness ratio rankings 6
Fig. 2. Android native vs. other frameworks in the Google Play Store 8
Fig. 3. Type of frameworks in relation to the various categories 9
Fig. 4. Median of downloads in relation to frameworks .. 10
Fig. 5. Ratings in relation to frameworks ... 11
Fig. 6. Rating of various frameworks... 12
Fig. 7. Positive and negative experience .. 13
Fig. 8. Processes before choosing a framework ... 14
Fig. 9. Deciding factors when choosing a framework .. 15
Fig. 10. Relative ranks of deciding factors on the product 17
Fig. 11. Relative ranks of deciding factors on the development process 20
Fig. 12. Purpose of using frameworks ... 22

vi

List of Tables

Table 1. Formulas for ranking the various frameworks ... 7
Table 2. Distribution of frameworks in Google Play Store 8

1

1 Introduction

1.1 Motivation

Mobile apps are being developed at an increasing rate to fulfill human needs. According

to statistical data, mobile app downloads worldwide have increased dramatically in re-

cent years. While in 2020, 218 billion apps were downloaded by users, that number

increased in 2021 to 230 billion app downloads, an increase of 5.5% [1]. In addition,

the number of mobile apps available in the leading App Stores, Google Play, and Apple

App Store has also increased in recent years. While in 2015, the number of available

apps in the Google Play Store was 1.6 million, this number increased in 2021 to 3.5

million [2,3]. Similarly, the number of available apps in the Apple App Store increased

from 1.4 million in 2015 to 2.2 million in 20211 [3,4]. From the latter, it can be con-

cluded that the demand for mobile apps among various users has been growing contin-

uously over the years.

iOS and Android are the two large competing operating systems for mobile apps [5].

Organizations must develop a mobile app for each platform to service all customers.

This is challenging since each platform's design, and development requirements are

different [6]. To solve this problem, various cross-platform mobile development frame-

works have been developed by tech companies. Developing with cross-platform frame-

works makes it possible to develop two apps in one code-based for both the iOS and

Android platforms [7]. This research aims to provide more insights into the various

mobile development frameworks used within Google Play Store and whether develop-

ers indeed prefer cross-platform frameworks.

1.2 Problem definition

Mobile development frameworks are powerful toolkits for building robust mobile apps

[8]. Developers can choose different strategies to build mobile apps. For instance, de-

velopers can build mobile apps in iOS native, Android native, React Native, Flutter,

Xamarin, Ionic, Cordova, Unity, NativeScript, Kotlin Multiplatform, etcetera.

iOS native can only be used to create iOS apps. Similarly, Android native can only

be used to create Android apps. To develop a native app for the iOS platform, Objec-

tive-C or Swift can be used as a programming language, whereas for the Android native

app, Java or Kotlin can be used as a programming language. React Native, Flutter,

Xamarin, etcetera are cross-platform mobile development frameworks. Cross-platform

mobile development frameworks are used to create apps that run on both iOS and An-

droid platforms [8].

According to Lachgar & Abdali [9], native apps are more improved in performance

than apps developed in other frameworks. Shevtsiv & Striuk [7] also stated that the app

development cost of native apps is more expensive than cross-platform apps when tar-

geting multi-platforms. This also means that two development teams are working on

1 Apple and Google constantly remove low-quality content from their app stores. Therefore,

the precise quantity of applications may vary.

2

two different apps for iOS and Android. Shevtsiv & Striuk [7] conjecture that the costs

for native mobile development are much higher than when the apps are developed in a

cross-platform mobile development framework.

It appears that there are many different cross-platform development frameworks

with their advantages and disadvantages. Since developers struggle to choose a partic-

ular framework that meets their needs, it is essential to clarify the deciding factors to

make it easier for developers to choose a particular type of framework.

1.3 Research question

This research will answer the following research questions:

• RQ1: What are the most used mobile development frameworks for developing

Android mobile apps?

The following sub-questions have been formulated and will help to answer the first

main question:

• SQ1.1: What type of frameworks are used in the Google Play Store?

• SQ1.2: How does the type of frameworks relate to the different categories?

• SQ1.3: What is the relationship between the app downloads and the type of frame-

works?

• SQ1.4: What is the relationship between the app ratings and the type of frameworks?

The goal of RQ1 is to identify whether a mobile app is developed with Android native

or a cross-platform mobile development framework. Since there are various types of

cross-platform mobile development frameworks, it is also essential to check which

frameworks have been used to develop the mobile apps. This will be conducted by

analyzing the app data from the Google Play Store.

• RQ2: What are the deciding factors for developers to choose a mobile develop-

ment framework for developing Android mobile apps?

The following sub-questions have been formulated and will help to answer the second

main question:

• SQ2.1: How do developers rate the various frameworks?

• SQ2.2: How positive or negative are developers about the various frameworks?

• SQ2.3: Which processes do developers go through before choosing a framework?

• SQ2.4: Which deciding factors do developers consider the most when choosing a

framework?

• SQ2.5: What impact does the framework have on the product and the development

process?

• SQ2.6: For what purposes are the developers using the various frameworks?

3

The goal of RQ2 is to investigate the most important deciding factors for developers

when considering a mobile development framework for Android mobile apps. This will

be achieved by conducting a survey and interviews.

The scope of the research will focus on examining free Android apps in the Google

Play Store. This is because the APK (Android Package) files of the various apps from

the Google Play Store can be mined via AndroZoo2 (a dataset of Android apps collected

from the Google Play Store by the University of Luxembourg). During the literature

research, no dataset of IPA (iOS Package) files or tool was found to mine iOS apps.

1.4 Scientific and practical contribution

This research will provide insight into which development frameworks are used the

most in the Google Play Store. Furthermore, the focus will be on the deciding factors

that should be considered while choosing a particular framework. Besides the thesis

that will be written, the research results will also be posted by writing a blog3 on the

Medium platform. This allows developers or experts to gain insight into the research

results while using the acquired knowledge in their further work experience.

2 Related literature

Several studies related to this topic have already been conducted in this domain.

Malavolta et al. [10,56] investigated the different hybrid mobile apps in the Google

Play Store. Using the APK Category Checker tool, data of 11.917 free apps was ex-

tracted from the Google Play Store, and the apps were analyzed on various mobile de-

velopment frameworks. The study's data is outdated since the most popular frameworks

currently on the market are not included in this research. For instance, popular frame-

works such as React Native was launched in May 2015, and Flutter was launched in

December 2018 [11,12]. The focus was on exploring the apps (number of hybrid apps

in Google Play Store, most used frameworks, etcetera). Unfortunately, this study has

not investigated the deciding factors for choosing a particular framework [10].

Allix et al. [13] described how AndroZoo works and what can be done with it. An-

droZoo retrieves metadata from millions of Android apps from the Google Play Store.

It contains metadata such as APK data, manifest, releasing, etcetera. AndroZoo has

developed specialized crawlers that automatically retrieve the metadata from various

apps. Researchers who need the dataset in their research can request access to a selected

dataset. The dataset may only be used for research purposes. The goal of AndroZoo is

to contribute to ongoing research and enable new potential research topics in Android

apps.

A study by Lachgar & Abdali [9] presented a framework to select the best technol-

ogy to develop a specified mobile application in a given context. The framework

2 https://androzoo.uni.lu/
3 https://medium.com/@a.banwarie/choosing-the-right-framework-for-android-development-

which-mobile-development-frameworks-are-c813339149a9

https://androzoo.uni.lu/
https://medium.com/@a.banwarie/choosing-the-right-framework-for-android-development-which-mobile-development-frameworks-are-c813339149a9
https://medium.com/@a.banwarie/choosing-the-right-framework-for-android-development-which-mobile-development-frameworks-are-c813339149a9

4

determined a mobile development method (native, hybrid, or web) and was based on a

set of relevant questions to make a decision. They created a decision tree to adopt the

correct development method. After this, the appropriate tool for the implementation

based on a set of relevant criteria could be determined [9].

Another research by Nygård [15] conducted a literature review comparing the dif-

ferent platforms and approaches in mobile app development. Nygård [15] mainly

looked at aspects such as development costs, supported platforms, performance, quality

of UX, sensor and device access, monetization, and app maintenance. His conclusion

emerged that it is essential to do further research on modern cross-platform frameworks

in the future as they are constantly innovating.

3 Research strategies and research methods

The type of scientific research is quantitative research using data collection and soft-

ware analysis tools, combined with a survey and interviews to gain qualitative insights.

Based on an inductive research approach, data from the Google Play Store was ex-

tracted. After this, the extracted data was analyzed, and a theory was formulated for the

used mobile development frameworks in the Google Play Store. Also, a theory was

formulated for the deciding factors for choosing a framework.

3.1 Quantitative descriptive research

To answer RQ1: “What are the most used mobile development frameworks for devel-

oping Android mobile apps?” quantitative descriptive research was performed. By per-

forming quantitative descriptive research, insight was gained into the number of apps

(native apps and cross-platform apps). Also, the mobile development frameworks in

which the mobile apps are built can be determined.

Data collection. The top 50 free apps from the Google Play Store were selected from

11 categories, resulting in a dataset of 550 apps. The categories such as Finance, Life-

style, Shopping, etcetera were randomly selected. The APK data were collected from

February 25, 2022, to April 8, 2022. A data set of at least 550 apps had been chosen to

keep the data set not too limited. As a result, a broader scope was examined during the

analysis, and frameworks were not excluded.

Data collection was performed using the dataset available via AndroZoo [13]. The

tool is actively maintained, and the dataset was accessed by sending a request to An-

droZoo. Via AndroZoo, an API key was received. After this, a CSV4 file was down-

loaded via the AndroZoo website. The next step was to search the package name of the

apps. This was possible by searching the app in the Google Play Store, and via the

browser, the package name could be copied from the URL (Appendix 1). Subsequently,

the CSV file could be opened, and the SHA2565 number of the app could be found with

4 https://androzoo.uni.lu/lists
5 The APKs are made unique with SHA256 hashes in AndroZoo [13].

https://androzoo.uni.lu/lists

5

the package name (Appendix 1). By entering the API key and the SHA256 number in

the link, which is available via AndroZoo6, the APK file could be downloaded as a .apk

file (Appendix 1). The last step was to extract the .apk file so that the APK data of the

app could be analyzed.

App downloads and ratings were collected for each app from the Google Play Store.

The data of the downloads in the Google Play Store are rounded to whole numbers. For

the app ratings, the number of stars per app was collected.

Measurement & data analysis. Measurement and data analysis were performed by

looking at the frameworks used to develop the apps in each category. To analyze the

various apps, reverse engineering was applied by looking at the source files in the APK

data. To open the APK files and analyze the used framework, Android Studio was used.

A few examples are provided as a recognition method for the various frameworks. For

example, if the flutter_assets folder in the project AND the file "libflutter.so" in

"/lib/x86_64" is present, the app is developed using the Flutter framework (Appendix

2). If the file "libreact_nativemodule_core.so" AND "libreactnativejni.so" in

"/lib/x86_64" is present, then the app is developed using the React Native framework.

Another example is if the file "libxamarin-app.so" AND "Xamarin.AndroidX.Core.dll"

is present, then the app is developed using the Xamarin framework. The other frame-

works have been analyzed similarly. The data was processed in a table to visualize the

results. The frameworks were indicated by category in a table and were visualized in

pie charts and bar charts. Subsequently, the relations between the various categories

were analyzed. Based on the data from all the selected apps of all the categories, the

used frameworks within the Google Play Store were indicated.

The median downloads of the apps developed per framework were examined to pro-

vide insight into the downloads. Due to this, the results are not influenced by outliers.

Three categories have been created to determine how well the apps built in a particular

framework are rated. The categories are good ratings (3.6-5.0 stars), fair ratings (2.1-

3.5 stars), and poor ratings (0-2.0 stars). The number of apps was sorted per framework

in the three categories, and based on this, a percentage was calculated.

3.2 Quantitative survey and qualitative interviews

To answer RQ2: “What are the deciding factors for developers to choose a mobile de-

velopment framework for developing Android mobile apps?” a quantitative survey and

qualitative interviews were conducted. The research was conducted to gain insight into

the specific sub-questions of RQ2. The interviews were obtained to make the deciding

factors measurable for the various frameworks.

Data collection. A survey and interviews were conducted as the main data collection

technique for answering RQ2. An online survey was conducted to collect data (Appen-

dix 8). In order to collect data for SQ2.1 and SQ2.2, inspiration has been gained for the

survey [15]. In a survey conducted by the State of JS [15] in the figure below, the

6 https://androzoo.uni.lu/api_doc

https://androzoo.uni.lu/api_doc

6

satisfaction, interest, usage, and awareness rankings were determined for the JavaScript

frameworks from 2016 to 2021.

Fig. 1. Satisfaction, interest, usage, and awareness ratio rankings

The interviews were personal online conversations, and the interview questions were

prepared based on the survey and literature research. The type of open-ended interview

used was semi-structured [16]. Probing questions were asked based on the information

provided during the interview. As a result, the same structure was not always followed

for all interviewees. In general, a structure was followed, and several questions were

prepared (Appendix 7). To collect the data, 10 interviews were conducted with lead

developers. The background of the lead developers was investigated via LinkedIn, and

an invitation for an interview was sent. For instance, Android native developers, and

cross-platform developers in Flutter, React Native, Xamarin, etcetera were interviewed.

Measurement & data analysis. The survey answers were analyzed by using Excel.

The responses of SQ2.1 were sorted and calculated based on the formulas presented in

table 1 [15]. For instance, for Android native, 26 developers indicated that they would

use it again, two developers indicated that they would not use it again, 12 indicated that

they were interested, and none of the developers indicated that they had never heard of

it. Based on these numbers the scores were calculated. The answers to the survey ques-

tions SQ2.2-SQ2.6 were sorted and calculated in percentages. By dividing the number

of answers by the total number of respondents, the percentage could be calculated, e.g.,

to calculate the score of the deciding factor performance, 38 of the 44 developers indi-

cated that they considered performance as an essential factor when choosing a frame-

work. Hence, a percentage of 86.4% is calculated.

7

Table 1. Formulas for ranking the various frameworks

Ranking of frameworks Formulas

Satisfaction would use again / (would use again + would not use again)

Interest want to learn / (want to learn + not interested)

Usage (would use again + would not use again) / total

Awareness (total – never heard) / total

The interviews were analyzed based on grounded theory [17]. After the data was col-

lected, the data was prepared. For instance, pseudonyms were assigned to the develop-

ers' names, and the interviews were organized by source. Subsequently, open coding

was used to break the data down analytically. The data collected from the interviews

was coded per type of developer. For instance, if three interviews with three Android

developers were taken, the codes (labels) were compared for similarities and differ-

ences. Following that, a codebook was created to help navigate through the data. In

addition, axial coding was applied. With axial coding, the codes formed in open coding

were made into categories. Open codes were grouped based on similarities, and as a

result, broader patterns could be noticed in the data. For instance, an Android developer

explains that an app developed in native Android always performs better than one de-

veloped in Flutter. Similarly, another Android developer claims that an app developed

in Android native performs better than one developed in Flutter. Based on similarities,

we can conclude that performance is a category. Also, the literature was revisited to see

if the categories connect or differ from the literature. Furthermore, links and relation-

ships between the various categories were explored. Finally, selective coding was ap-

plied to identify central categories representing the research's central phenomenon.

4 Results of RQ1

This chapter describes the results of RQ1: “What are the most used mobile development

frameworks for developing Android mobile apps?”. Subsection 4.1 shows the results

of the used frameworks in the Google Play Store. In addition, the relationship between

the frameworks and the app downloads and app ratings is shown in subsections 4.3 and

4.4.

4.1 Type of frameworks used in Google Play Store

Table 2 shows an overview of the various mobile development frameworks per cate-

gory in numbers and percentages. The analysis shows that 74.4% of the apps are devel-

oped in Android native. The results indicate that most Android apps are still developed

in a native framework, and 25.6% are developed in a cross-platform mobile develop-

ment framework.

8

Table 2. Distribution of frameworks in Google Play Store

Category Android native React Native Flutter Xamarin Ionic Cordova Unity Other

Communication 43 (86%) 4 (8%) 1 (2%) 1 (2%) 1 (2%)

Finance 34 (68%) 10 (20%) 1 (2%) 5 (10%)

Food & Drink 32 (64%) 8 (16%) 2 (4%) 3 (6%) 4 (8%) 1 (2%)

Health & Fitness 36 (72%) 5 (10%) 5 (10%) 2 (4%) 1 (2%) 1 (2%)

Lifestyle 28 (56%) 9 (18%) 8 (16%) 2 (4%) 1 (2%) 2 (4%)

Medical 30 (60%) 5 (10%) 4 (8%) 2 (4%) 2 (4%) 7 (14%)

Music & Audio 41 (82%) 6 (12%) 1 (2%) 2 (4%)

News & Magazines 45 (90%) 2 (4%) 2 (4%) 1 (2%)

Shopping 40 (80%) 5 (10%) 3 (6%) 2 (4%)

Sports 39 (78%) 3 (6%) 4 (8%) 2 (4%) 2 (4%)

Travel & Local 41 (82%) 7 (14%) 2 (4%)

Total apps 409 (74.4%) 64 (11.6%) 31 (5.6%) 16 (2.9%) 13 (2.4%) 12 (2.2%) 5 (0.9%) 0 (0.0%)

Figure 2 illustrates that after Android native (74.4%), the following cross-platform

frameworks were used as mobile development frameworks: React Native (11.6%),

Flutter (5.6%), Xamarin (2.9%), Ionic (2.4%), Cordova (2.2%) and Unity (0.9%). No

other frameworks were found in the dataset of 550 apps.

Fig. 2. Android native vs. other frameworks in the Google Play Store

4.2 Type of frameworks in relation to the different categories

Figure 3 illustrates that Android native is used the most in all categories to develop an

app. In News and Magazines category, 90% of the apps are developed in Android na-

tive. It is also noticeable that React Native is used in all categories. Flutter is also used

within most categories except in Travel & Local.

9

When analyzing the different categories, React Native is used the most (20%) in

Finance and the least in News & Magazines (4%). In addition, it appears that Flutter is

used the most in the category Lifestyle (16%) and the least in Music & Audio, Finance,

and Communication (2%). Cordova is also used the most in the category Medical as a

cross-platform mobile development framework (14%). Xamarin, Cordova, and Ionic

do not appear in every category and are used relatively few in various categories (be-

tween 2-14%).

Fig. 3. Type of frameworks in relation to the various categories

4.3 Relationship between app downloads and type of frameworks

Figure 4 shows the relationship between the median of app downloads developed in

various frameworks. The results indicate that apps developed in Android native, and

Flutter are the most downloaded (1.000.000). The results also show that apps developed

in React Native are often downloaded (500.000). Apps developed in Xamarin, Ionic,

and Cordova are downloaded the least (between 100.000 and 10.000).

10

Fig. 4. Median of downloads in relation to frameworks

4.4 Relationship between app ratings and type of frameworks

Figure 5 shows the ratings per framework in three different categories, namely good

ratings (3.6 – 5.0 stars), fair ratings (2.1 – 3.5 stars), and poor ratings (0 – 2.0 stars).

The results show that apps developed in Android native are the best rated. Of the 409

apps, 325 apps (79.5%) have a good rating, of which 80 apps (19.6%) receive a fair

rating, and only four apps (1.0%) have a poor rating. Since the apps developed in An-

droid native are much more common than those developed in the other frameworks, the

results indicate that Android native apps are the best rated by the users.

It also appears that apps developed in Flutter receive a relatively large number of

good reviews (77.4%). Also, it is noticeable that the highest percentage of poorly rated

apps occur in Flutter (9.7%) and React Native (4.7%).

Most apps developed in React Native and Xamarin receive above 60% good ratings.

Apps developed in Ionic, and Cordova generally receive fewer good ratings (equal to

or less than 50%).

11

Fig. 5. Ratings in relation to frameworks

5 Results of RQ2

This chapter describes the results of RQ2: “What are the deciding factors for developers

to choose a mobile development framework for developing Android mobile apps?”.

Each subsection describes a sub-question of RQ2.

RQ1 indicated that Android native, React Native, Flutter, Xamarin, and Unity are

used as a mobile development framework in the Google Play Store. Based on these

frameworks, a survey was created in which 44 mobile developers participated. The re-

sults show that the majority (61.4%) of developers have more than five years of mobile

development experience, 20.5% have three to five years of experience, 15.9% have one

to three years of experience, and 2.3% have less than one year experience in mobile

development.

5.1 Rating of various frameworks

All respondents were asked the survey question: “Suppose you would have to start a

new mobile project next week. Would you consider using the following frameworks?”.

Each framework was assessed with the following options: would use again, would not

use again, interested, not interested, and never heard. As indicated in section 3, the

satisfaction, interest, usage, and awareness score were calculated based on the provided

options [15].

From figure 6, the results show that 95.2% are satisfied with the mobile development

framework Flutter. 92.9% are satisfied with Android native, 82.4% with React Native,

and 40% of the developers were satisfied with the mobile development framework

12

Xamarin. Only 10% to 12.5% of the developers were satisfied with Ionic and Cordova

as a mobile development framework.

Figure 6 also shows that most (86.4%) of the developers are interested in Flutter.

75% of the developers indicated being interested in Android native, 57.7% in React

Native, 22% in Xamarin, and only 12.9% of the developers showed an interest in Ionic

and Cordova.

In addition, most developers (63.6%) said they use Android native as a mobile de-

velopment framework. Flutter is used by 47.7% of developers as a cross-platform

framework, whereas React Native is used by 38.6%, Xamarin by 34.1%, Cordova by

22.7%, and Ionic by 18.2%.

Figure 6 shows that all developers are aware of Android native as a mobile develop-

ment framework, whereby 97.7% are aware of React Native and Flutter as a cross-

platform framework. 95.5% were aware of Xamarin, 93.2% of Cordova, and 88.6% of

Ionic. Between 2.3% and 11.4% of the developers were unaware of the frameworks

mentioned. The results show that most developers were familiar with the frameworks

indicated in the survey.

Fig. 6. Rating of various frameworks

13

5.2 Positive and negative experience with various frameworks

Based on the survey question mentioned in the previous paragraph, the positive and

negative experiences of the developers with the various frameworks are visualized in

figure 7. The options would not use again and not interested indicate that developers

have a negative experience with the framework (this is visualized in red in figure 7),

whereas would use again and interested indicate that developers have a positive expe-

rience with the framework (this is visualized in blue in figure 7). Never heard was also

one of the options in the survey, but this is not included in the figure because the devel-

opers could not indicate whether they are positive or negative about the framework.

Figure 7 shows that 88.7% of developers had a positive experience with Flutter as a

mobile development framework, whereas 86.4% and 65.9% of the developers had a

positive experience with Android native and React Native. Only 31.8% of the develop-

ers had a negative experience with React Native, 13.6% with Android native, and 9.1%

with Flutter. The results indicate that Flutter was experienced as the positivist mobile

development framework with the least negative score compared to the other frame-

works. Less than 30% of the developers appeared to have a positive experience with

Xamarin (27.2%), Ionic, and Cordova (11.4%). 81.5% of developers had a negative

experience with Cordova, 77.3% with Ionic, and 68.2% with Xamarin. The results show

that the developers experienced Cordova as the negativist mobile development frame-

work, with the least positivist score compared to the other frameworks.

Fig. 7. Positive and negative experience

14

5.3 Processes before choosing a framework

The respondents were also asked to answer the question: "Suppose you have to choose

the most suitable framework. Which processes do you consider when choosing a mobile

development framework?". The developers could select multiple options. Figure 8

shows that 81.8% of developers use their expertise before choosing a framework. In

other words, a developer with experience with JavaScript and who has previously de-

veloped apps in React Native will prefer React Native as a framework. In addition,

developers also find it essential to research other frameworks (65.9%) and perform re-

search on similar projects (52.3%). Less than 40% opted for processes such as compar-

ison analysis with previous projects (36.4%), use of in-house guidelines (20.5%), use

of external guidelines (18.2%), and feasibility studies (13.6%). In addition, 4.5% (men-

tioned as other in figure 8) indicated that they also find it essential to ask around within

the communities about mobile developers' experiences with frameworks.

Fig. 8. Processes before choosing a framework

5.4 Most important deciding factors when choosing a framework

The respondents were also asked to indicate the most important deciding factors when

choosing a framework. Therefore, the survey asked the following question: "Suppose

you have to choose the most suitable framework. Which deciding factors do developers

consider the most when choosing a framework?" The developers could select multiple

options. Figure 9 indicates that performance (86.4%), development skills (79.5%), de-

velopment time (75.0%), target platforms (70.5%), app functionalities (features)

(68.2%), and UX/UI (63.6%) are in the top six when it comes to the most important

deciding factors that developers consider when choosing a framework. License cost

15

(27.3%) and development cost (38.6%) were chosen by the developers as the least es-

sential deciding factors when choosing a framework. 4.5% of developers (mentioned

as other in figure 9) also indicated that they would consider support of IDE when choos-

ing a framework.

Fig. 9. Deciding factors when choosing a framework

5.5 Impact of frameworks on the product and development process

To show the impact of the different factors, the deciding factors from figure 9 are de-

scribed. These factors are subdivided into product and development process. With the

product, the developed product is meant, in this case, an app developed for the user.

The development process refers to the various processes required to develop an app.

The impact of the various frameworks on the development process is also described.

For the product and the development process, relative ranks were assigned to each

factor per framework so that a comparison can be made on how well particular factor

ranks per framework.

For SQ2.5 and SQ2.6 of RQ2, limited or no data could be collected during interviews

and survey for the frameworks Unity, Cordova, and Ionic. As a result, no statement

could be made for the above frameworks. Also, security was not made measurable dur-

ing the research because of a lack of data. Hence, no statement could be made.

Impact of various frameworks on the product.

Performance

• Android native: Excellent performance as Android native apps are compiled using

the platform's core programming language and API. They are built for the Android

16

platform without using layers. Android native apps use direct access to the hardware

of the devices (GPS, camera, microphone, sensors, bluetooth, etcetera). In general,

the best performance can be achieved with native apps [18]. Rank: 5.0

• React Native: Good performance as React Native communicates through a JavaS-

cript bridge. The JavaScript bridge is between the React Native application layer and

the hardware components, and each interaction with the device has to pass through

that bridge, which affects performance [18]. In terms of performance React Native

is near-native. Rank: 4.0

• Flutter: Very good performance as Flutter is slightly more efficient than React Na-

tive and Xamarin. Flutter renders the UI directly. It does not require JavaScript

bridges. This allows developers to build complex apps without affecting perfor-

mance and startup times [18]. In terms of performance Flutter is close to native.

Rank: 4.5

• Xamarin: Good performance as Xamarin uses platform-centric hardware stimula-

tion for apps. In terms of performance, Xamarin is near-native apps as the cross-

platform capabilities are mainly about sharing the business logic and not the code-

base [18]. Rank: 4.0

App functionalities (features)

• Android native: Very mature to use features such as sensors (NFC), camera, GPS,

microphone, and bluetooth [19]. Rank: 5.0

• React Native: Relatively mature for apps that use sensors (NFC), camera, GPS, mi-

crophone, and bluetooth [20]. Rank: 4.0

• Flutter: Relatively mature for apps that use sensors (NFC), camera, GPS, micro-

phone, and bluetooth [21]. Rank: 4.0

• Xamarin: Relatively mature for apps that use sensors (NFC), camera, GPS, micro-

phone, and bluetooth [22]. Rank: 4.0

UX/UI

• Android native: Excellent UX/UI as Android provides a variety of pre-built UI com-

ponents such as structured layout objects and UI controls that allow developers to

build the graphical user interface for apps. Android also provides other UI modules

for special interfaces such as dialogs, notifications, and menus [23]. Rank: 5.0

• React Native: Good UX/UI as React Native implements native UI components, al-

lowing apps to look like native apps and providing a high-quality user interface [24].

Rank: 4.0

• Flutter: Very Good UX/UI as Flutter offers an extensive library of pre-built widgets.

Developers can also create their own widgets or customize pre-existing widgets [24].

Rank: 4.5

• Xamarin: Good UX/UI as Xamarin.Forms use standard interface elements and pro-

vide a library of templates that can be reused. Xamarin.iOS and Xamarin.Android

can be used for manual customization if needed [24]. Rank: 4.0

17

Development cost

• Android native: Expensive because the apps are built for an individual platform,

and code reusability is not possible [18]. Rank: 3.0

• React Native: Cost-saving because the apps are built for multiple platforms, and

code reusability is possible [18]. Rank: 4.5

• Flutter: Cost-saving because the apps are built for multiple platforms, and code re-

usability is possible [18]. Rank: 5.0

• Xamarin: Cost-saving because the apps are built for multiple platforms, and code

reusability is possible [18]. Rank: 4.0

The relative ranks of development cost are influenced by license cost, development

time, target platform, and code usability.

License cost

• Android native: Open-source [25]. Rank: 5.0

• React Native: Open-source [26]. Rank: 5.0

• Flutter: Open-source [27]. Rank: 5.0

• Xamarin: Open-source [28]. However, developers and enterprises still need to pay

between $540 to $3000 per year for Visual Studio Professional/ Enterprise, depend-

ing on the license used [29]. Rank: 4.0

In figure 10, a relative rank of the impact of the various frameworks on the product is

visualized.

Fig. 10. Relative ranks of deciding factors on the product

18

Impact of various frameworks on the development process.

Development skills

• Android native: Uses Kotlin or Java (typed) as a programming language. The avail-

ability of developers is high, and the learning curve is easy to learn [30]. Rank: 4.5

• React Native: Uses JavaScript (dynamic) as a programming language. The availa-

bility of developers is high, and the learning curve is very easy to learn [30]. Rank:

5.0

• Flutter: Uses Dart (typed) as a programming language. The availability of develop-

ers is limited, and it requires more time to learn the framework because it uses the

new Dart programming language [30]. Rank: 3.5

• Xamarin: Uses C# (typed) as a programming language. The availability of devel-

opers is limited, and the learning curve is easy to learn [30]. Rank: 4.0

A dynamic language like JavaScript has more issues during development because type

bugs cannot be checked at compile time but only occur at runtime. However, typed

languages like Kotlin or Dart do type checking at compile time [32].

Development time

• Android native: Time-consuming because the app codes have to be written from

scratch for individual platforms. Android native apps can only be used for the An-

droid platform [24]. Rank: 3.0

• React Native: Time-saving because with hot and live reload feature, the develop-

ment time can be further reduced. React Native offers a vast library of UI compo-

nents, allowing for faster development time [24]. Rank: 4.5

• Flutter: Time-saving as it uses a single tech stack and shareable codebase that re-

duces the development time. Developers need to make only minor changes to release

apps across various platforms because of a robust set of fully customizable widgets

to develop native-like interfaces in a few moments. With the hot-reload feature, the

development time is further reduced [24]. Rank: 5.0

• Xamarin: Time-saving as it uses a single tech stack and shareable codebase that

reduces the development time. Developers need to make only minor changes to re-

lease apps across various platforms. With the hot-reload feature, the development

time can be further reduced [24]. Rank: 4.0

The relative ranks of development time are also influenced by the target platform and

code usability.

Target platforms

• Android native: Mobile (Android) [19]. Rank: 1.0

• React Native: Mobile (Android, iOS) [33]. Rank: 4.0

• Flutter: Mobile (Android, iOS), Web, Desktop (Windows, Linux, macOS), Embed-

ded [35]. Rank: 5.0

• Xamarin: Mobile (Android, iOS) [35]. Rank: 4.0

19

Maintainability (Updates of operating systems)

• Android native: Always up to date with the latest version of Android [19]. Rank:

5.0

• React Native: Slightly delayed support for the latest platform updates [36]. Rank:

4.0

• Flutter: Slightly delayed support for the latest platform updates [36]. Rank: 4.0

• Xamarin: Slightly delayed support for the latest platform updates [37]. Rank: 4.0

Availability of libraries

• Android native: Above 58.9K Android specific packages [38]. Rank: 5.0

• React Native: Above 1.0K React Native specific packages [39]. Rank: 3.5

• Flutter: Above 23.4K Flutter specific packages [40]. Rank: 4.0

• Xamarin: Above 1.3K Xamarin specific packages [41]. Rank: 3.5

Code usability

• Android native: Code reuse is not possible [18]. Rank: 1.0

• React Native: Code reuse is possible up to 90% [18]. Rank: 5.0

• Flutter: Code reuse is possible up to 85% [34]. Rank: 4.0

• Xamarin: Code reuse is possible between 80-90% [28]. Rank: 4.0

Documentation and resources

• Android native: Very clear and accessible as Android provides very detailed and

easy-to-apply documentation. Developers can read standard documents, watch video

training, or even complete lab exercises to master their skills [19]. Rank: 5.0

• React Native: Clear and accessible as there are sufficient documentation and addi-

tional resources (user-friendly documentation, guides, tutorials, and Q&A sites)

[20]. Rank: 4.0

• Flutter: Very clear and accessible as it provides detailed and easy-to-apply docu-

mentation. Developers can read standard documents, watch video training, or even

complete lab exercises to master their skills [21]. Rank: 5.0

• Xamarin: Clear and accessible as it has been on the market for a while and, there-

fore, provides quality documentation. Developers can dive into use cases, step-by-

step tutorials, Q&As, snippets, videos, overviews, and other materials [28]. Rank:

4.0

In figure 11, the relative ranks of the impact of the various frameworks on the develop-

ment process is visualized.

20

Fig. 11. Relative ranks of deciding factors on the development process

The survey and interviews have indicated that other deciding factors are also important

when choosing a framework. In the description below, the other deciding factors are

described. However, no rank has been assigned as these deciding factors are not part of

figure 9.

Developer community

• Android native: Stars are not available on GitHub [42]. There are 103K articles on

Medium [43], while the framework activity is also descending on Stackoverflow

[31]. Kotlin is loved by 61.55% and Java by 47.15% of the developers [30].

• React Native: There are 104K stars on GitHub [44] and 17.8K articles on Medium

[45], while the framework activity is moderate on Stackoverflow [31]. JavaScript is

loved by 61.55% of the developers [30].

• Flutter: There are 143K stars on GitHub [46] and 22K articles on Medium [47],

while the framework activity is also rising on Stackoverflow [31]. Dart is loved by

63.77% of the developers [30].

• Xamarin: There are 5.6K stars on GitHub [48] and 2.3K articles on Medium [49],

while the framework activity is also descending on Stackoverflow [31]. C# is loved

by 61.96% of the developers [30].

21

Developer experience

• Android native: Hot and live reloading is not possible. The code is easy to debug,

and testing is supported in the framework (Unit, UI, screenshot tests, and perfor-

mance testing) [59]. Official supported IDEs are Android Studio and IntelliJ IDEA

[50].

• React Native: Hot and live reloading is possible. The code is difficult to debug, and

there is no official support in the framework. Testing is done by third-party tools and

frameworks [58]. Official supported IDEs are Visual Studio Code, Visual Studio,

Atom, and IntelliJ IDEA [51].

• Flutter: Hot reloading is possible. The code is easy to debug, and testing is sup-

ported in the framework (Unit, widget & integration testing) [60]. Official supported

IDEs are Android Studio, IntelliJ IDEA, and Visual Studio Code [52].

• Xamarin: Hot reloading is possible. The code is easy to debug, and testing is sup-

ported in the framework (Unit and UI testing) [61]. The official supported IDE is

Visual Studio [53].

5.6 Purposes of using the various frameworks

Finally, the respondents were also asked for what purposes they are using the frame-

works, whereby multiple options could be selected. In figure 12, the results indicate

that Flutter scores the highest for all the purposes compared to the other frameworks.

82.6% of the developers use Flutter for developing proof of concepts, 78.3% for devel-

oping new apps from scratch, 52.2% for rebuilding apps from other frameworks, and

47.8% for personal projects.

In addition, React Native also scores high in developing new apps from scratch

(72.7%) and developing proof of concepts (63.6%). Moreover, developers use React

Native the least for personal projects. Xamarin scores the lowest in developing new

apps from scratch (43.8%). Android native is used the least for rebuilding apps from

other frameworks (14.7%) and for developing proof of concepts (23.5%).

22

Fig. 12. Purpose of using frameworks

6 Strengths and weaknesses of the various frameworks

This chapter describes the strengths and weaknesses of the various frameworks. Based

on these, a framework can be chosen.

Android native

Strengths Weaknesses

• Excellent performance

• Very mature to use features such as

sensors (NFC), camera, GPS, micro-

phone, and bluetooth

• Excellent UX/UI

• Open-source

• Uses Kotlin or Java (typed) as a pro-

gramming language

• The availability of developers is

high

• The learning curve is easy to learn

• Always up to date with the latest

version of Android

• High development costs when de-

veloping apps for multiple plat-

forms

• Code reuse is not possible

• Development time is high when

developing apps for multiple plat-

forms

• Apps can be developed only for

the Android platform

• Hot and live reloading is not pos-

sible

23

• Documentation and resources are

very clear and accessible

• Very large developer community

• The code is easy to debug

• Testing is supported in the frame-

work (Unit, UI, screenshot tests, and

performance testing)

• Jetpack compose makes it much

faster and easier to build android na-

tive UI

React Native

Strengths Weaknesses

• Good performance (near-native)

• Relatively mature for apps that use

sensors (NFC), camera, GPS, micro-

phone, and bluetooth

• Good UX/UI

• Low development cost when devel-

oping apps for multiple platforms

• Code reuse is possible up to 90%

• React Native uses pre-developed

components

• Open-source

• The availability of developers is

high

• The learning curve is very easy to

learn

• Development time is low when de-

veloping apps for multiple platforms

• Apps can be developed for the An-

droid, and iOS platforms

• Documentation and resources are

clear and accessible

• Large developer community

• Hot and live reloading is possible

• The possibility to build platform-

specific apps with a native look and

feel

• Uses JavaScript (dynamic) as a

programming language

• Slightly delayed support for the

latest platform updates

• The code is difficult to debug

• There is no official support in the

framework. Testing is done by

third-party tools and frameworks

• Some companies are reluctant to

use React Native as it is supported

by Meta (Facebook)

24

Flutter

Strengths Weaknesses

• Very good performance (close to na-

tive)

• Relatively mature for apps that use

sensors (NFC), camera, GPS, micro-

phone, and bluetooth

• Very good UX/UI

• Low development cost when devel-

oping apps for multiple platforms

• Code reuse is possible up to 85%

• Flutter is a widget-based framework

• Open-source

• Uses Dart (typed) as a programming

language

• Development time is low when de-

veloping apps for multiple platforms

• Apps can be developed for multiple

platforms Mobile (Android, iOS),

Web, Desktop (Windows, Linux,

macOS), Embedded

• Documentation and resources are

very clear and accessible

• Large developer community

• Hot reloading is possible

• The code is easy to debug

• Testing is supported in the frame-

work (Unit, widget & integration

testing)

• The possibility to build platform-

specific apps with a native look and

feel

• The availability of developers is

limited

• Developers require more time to

learn the framework because it

uses the new Dart programming

language

• Slightly delayed support for the

latest platform updates

• Some companies are reluctant to

use Flutter because it is still new

and not so mature yet

Xamarin

Strengths Weaknesses

• Good performance (near-native)

• Relatively mature for apps that use

sensors (NFC), camera, GPS, micro-

phone, and bluetooth

• Good UX/UI

• Low development cost when devel-

oping apps for multiple platforms

• Code reusability is possible

• A shared .NET standard library and

individual platform projects

• For the supporting IDE (Visual

Studio), a license fee has to be

paid when using for enterprise and

commercial purposes

• The availability of developers is

limited

• Slightly delayed support for the

latest platform updates

• Small developer community

25

• Open-source

• Uses C# (typed) as a programming

language

• The learning curve is easy to learn

• Development time is low when de-

veloping apps for multiple platforms

• Apps can be developed for the An-

droid, and iOS platforms

• Code reuse is possible between 80-

90%

• Documentation and resources are

clear and accessible

• Hot reloading is possible

• The code is easy to debug

• Testing is supported in the frame-

work (Unit and UI testing)

• The possibility to build platform-

specific apps with a native look and

feel

7 Discussion

7.1 Implications

When the results are compared with the research conducted by Malavolta et al. [10] in

2015, it appears that the use of cross-platform frameworks has increased in recent years.

The research by Malavolta et al. [10] showed that about 96% of the apps are developed

in Android native. About 4% of the apps were developed in cross-platform frameworks

such as Cordova, Titanium, etcetera. The results of section 4.1 show that approximately

75% of the apps are developed in Android native, and 25% are developed in a cross-

platform framework. This indicates that developers have created more apps using cross-

platform frameworks over time while the popularity is also growing. It is expected that

Android native will remain the largest in the coming years. However, the differences

are becoming smaller because the cross-platform frameworks are continuously improv-

ing, and the popularity of some frameworks, such as Flutter and React Native, are in-

creasing.

When the results of the first research question are compared with the research con-

ducted by Malavolta et al. [10], it is also noticeable that there are differences in the

types of frameworks. The popular cross-platform frameworks, such as React Native,

and Flutter, were introduced to the market after 2015 [11,12]. Also, the demand for

apps has increased significantly in recent years, leading many companies to consider

cross-platform frameworks so that they can quickly bring their app to the market [2,3].

This research has indicated that Android native is the best solution for developing

high-volume apps. This is because users can get the best performance and UX/UI in

Android native. It is also possible to build the most complex app features in Android

26

native when using sensors, microphone, camera, etcetera. The cross-platform frame-

works can be used when users are satisfied with close to native performance and UX/UI.

Also, the development cost is low when developing apps for multiple platforms with

cross-platform frameworks. For companies with a small budget that need an app, the

best solution would be to develop an app in a cross-platform framework. It is also in-

teresting for start-ups to build MVP (Minimum Viable Product) apps in a cross-plat-

form framework and quickly bring it on the market. If the app needs more complex

features after a while, then the app could be rebuilt in Android native.

When looking at the cross-platform frameworks, many apps have been developed in

React Native. This is probably because React Native was launched in 2015 [11], and at

that time, it was the best cross-platform framework based on the strengths described in

section 6.

React Native also originates from the React.js framework, which is famous for de-

veloping web applications. As a result, they have excellent integration with each other

[57]. Many web developers with JavaScript skills are also available, making React Na-

tive famous among them. Flutter was launched in 2018 [12], and given its strengths

described in section 6, this is a better framework than React Native and thus a signifi-

cant competitor for React Native. Also, it is currently the most popular framework

among developers [55].

Cordova and Ionic score the poorest as a framework on the various sub-questions of

the first research question. These are mainly web-based apps that render in the form of

an app on a device. As a result, apps developed in Cordova and Ionic have poor perfor-

mance, UX/UI, and app features compared to apps developed in other frameworks [54].

7.2 Research limitations

The research contained some limitations. The top 50 apps from 11 categories were an-

alyzed for the first research question. In total, a dataset of 550 apps. From the analysis

of these apps, seven types of frameworks were observed. Due to the time available for

this research and the time-consuming process of mining and analyzing the apps, it was

not possible to investigate a much larger dataset. Perhaps if a much larger dataset of,

for example, the top 500 apps of multiple categories in the Google Play Store were

examined, other frameworks could be observed than those found in this research.

A second limitation is that for SQ2.5 and SQ2.6 of RQ2, limited or no data could be

collected during the survey and interviews for the frameworks Unity, Cordova, and

Ionic. As a result, no statement could be made for these frameworks.

Another limitation is that the security of the various frameworks was not measured

during the research. Some developers argued that security depends on the developer

and how accurately the apps are developed. In other words, a developer determines how

secure an app is, for instance, by applying encryption. Another argument was that if

there are existing bugs in the frameworks, they are continuously solved by the devel-

oping organization of the framework. For instance, Google continuously solves bugs in

the Flutter framework. Some developers could not specifically indicate how secure a

particular framework was. Their general reasoning was that all the popular frameworks

27

developed by big tech companies are pretty secure. Based on the arguments, no state-

ments could be made about the security of the various frameworks.

7.3 Recommendations

Similar research could be conducted for the iOS platform to get insight in the various

mobile development frameworks and why developers are choosing for a particular

framework. A test app could also be developed in multiple frameworks. As a result, the

factors such as performance, UX/UI, development time, etcetera can be explicitly meas-

ured per platform so that the differences between the various frameworks can be ob-

served on both Android and iOS platforms. Conducting a good experiment can be time-

consuming, which could be a research by itself.

7.4 Experiences with AndroZoo

The use of AndroZoo for this study was generally a positive experience. Mining APK

files from AndroZoo was quite simple and fast. However, it was not possible to find

data such as ratings of apps from the Google Play Store in AndroZoo. In addition, the

apps can only be recognized in AndroZoo based on the Android package names. This

means that for each app, the package name must be searched via the Google Play Store.

After this, the app can be searched in AndroZoo using the package name and down-

loaded based on the SHA256 number. This is time-consuming as the CSV file contains

millions of lines of data, and the search result takes a long time to load. The process of

mining the apps took about two weeks for the used data set, and about four weeks were

needed to analyze the APK files.

8 Conclusion

This research aimed to gain insight into the various mobile development frameworks

chosen for Android development. The conclusions are described for each research ques-

tion.

8.1 Mobile development frameworks used in the Google Play Store

It can be concluded that about three-quarters (74.4%) of the developed apps are built in

Android native. In addition, it was noticed that most apps are built in Android native

(>55%) in almost all categories. About a quarter of the apps is developed with cross-

platform frameworks (25.6%), such as React Native (11.6%), Flutter (5.6%), Xamarin

(2.9%), Ionic (2.4%), Cordova (2.2%) and Unity (0.9%). From the latter, it can be con-

cluded that React Native is the most used cross-platform. This is probably due to the

strengths described in section 6 and because React Native has been on the market since

2015 [11]. React Native is also a mature framework with a large developer community.

When analyzing the categories, it is noticeable that React Native and Flutter are also

used in almost all categories.

28

When analyzing the relationship between app downloads and the type of framework,

it can be concluded that apps developed in Android native, and Flutter are downloaded

the most (median 1.000.000). In addition, it can be concluded that apps developed in

Cordova are downloaded the least (median 10.000).

Concerning the app ratings and type of frameworks, it can be concluded that apps

developed in Android native generally receive the best ratings from the users. It can

also be concluded that Flutter and React Native apps receive a lot of good ratings, but

most of the poor ratings also occur in these frameworks (between 4.7% and 9.7%).

8.2 Deciding factors when considering a mobile development framework

Considering the strengths and weaknesses in section 6, it can be concluded that if per-

formance is the most crucial aspect for the user, then apps should be developed in An-

droid native. The user also receives the best UX/UI, and the most complex app features

can also be used, such as sensors, microphone, camera, etcetera, without affecting the

user experience. In situations where apps are developed for consumers for multiple

platforms (iOS, Android, etcetera), the development cost and development time are

higher during the development process in comparison to Flutter, React Native, and

Xamarin.

If performance is not the most crucial aspect for the user, then apps can be developed

in cross-platform frameworks such as Flutter, React Native, and Xamarin. Each frame-

work has its advantages and disadvantages, but in general, it can be concluded that

Flutter is the best cross-platform framework. Flutter scores the best on most of the de-

ciding factors based on product and development process in comparison to Xamarin

and React Native. In terms of performance and UX/UI, Flutter is close to native. In

addition, there is a shorter development time, which means that the development costs

are much lower than Android native and the other frameworks when developing apps

for multiple platforms. There is also the possibility to develop apps for multiple plat-

forms such as Android, iOS, Web, Desktop, etcetera.

When comparing React Native and Xamarin, React Native scores better than Xama-

rin on most deciding factors based on product and development process. The develop-

ment time is also lower for React Native than Xamarin, which means the development

cost is also lower. Although React Native and Xamarin are both open-source, Xamarin

uses Visual Studio as an IDE for which license costs must be paid for commercial pur-

poses.

React Native is recommended for organizations that already have web developers

and are looking for a cross-platform framework for mobile development. The frame-

work is very easy to learn for web developers because it is JavaScript-based and very

popular among them. Hence, web developers can develop mobile apps easily and fast

with React Native. Thus, the development cost is also low when developing apps for

multiple platforms. In terms of performance and UX/UI, React Native is near-native.

29

References

1. Statista. 2022. Annual number of mobile app downloads worldwide 2021 | Statista. [online].

Available at: https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-

app-store-download. [Accessed 25 January 2022].

2. Statista. 2022. Number of apps available in leading app stores as of 2022 | Statista. [online].

Available at: https://www.statista.com/statistics/276623/number-of-apps-available-in-lead-

ing-app-stores/. [Accessed 25 January 2022].

3. Statista. 2022. Number of available applications in the Google Play Store from December

2009 to March 2022. [online]. Available at: https://www.statista.com/statis-

tics/271644/worldwide-free-and-paid-mobile-app-store-download. [Accessed 25 January

2022].

4. Statista. 2022. Number of available apps in the Apple App Store from 2008 to 2022. [online].

Available at: https://www.statista.com/statistics/268251/number-of-apps-in-the-itunes-app-

store-since-2008/. [Accessed 25 January 2022].

5. Statista. 2022. Mobile operating systems' market share worldwide from January 2012 to

January 2022. [online]. Available at: https://www.statista.com/statistics/272698/global-

market-share-held-by-mobile-operating-systems-since-2009/. [Accessed 20 January 2022].

6. Biørn-Hansen, A., Grønli, T. and Ghinea, G., 2019. A Survey and Taxonomy of Core Con-

cepts and Research Challenges in Cross-Platform Mobile Development. ACM Computing

Surveys, [online], 51(5), pp.1-34. Available at:

https://dl.acm.org/doi/pdf/10.1145/3241739?casa_token=xHmNK4vGgycAAAAA:-

U0oiSTHo1Jtj3Q9dyJfEEx05Oa7nL1VfyohtY8XHHEb-

drGv08aD5NevctInCHcbqbM_Wmn1WtE.

7. Shevtsiv, A.N., & Striuk, M.A. (2020). Cross platform development vs native development.

CEUR Workshop Proceedings, [online], 2832, pp. 75-83. Available at: http://ceur-

ws.org/Vol-2832/paper09.pdf.

8. Admin, 2022. How to Choose the Right Mobile App Development Framework? - 6 Tips In-

side. [online]. Explorate Global. Available at: https://www.explorate-

global.com/blog/choose-mobile-app-development-framework/ [Accessed 19 January

2022].

9. Lachgar, M. and Abdali, A., 2017. Decision Framework for Mobile Development Meth-

ods. International Journal of Advanced Computer Science and Applications, 8(2), pp.110-

118. https://doi: 10.14569/IJACSA.2017.080215.

10. Malavolta, I., Ruberto, S., Soru, T. and Terragni, V. (2015). End Users' Perception of Hybrid

Mobile Apps in the Google Play Store. 2015 IEEE International Conference on Mobile Ser-

vices, 2015, pp. 25-32, https://ieeexplore.ieee.org/document/7226668.

11. Reactnative.dev. 2022. React Native · Learn once, write anywhere. [online]. Available at:

https://reactnative.dev/. [Accessed 18 June 2022].

12. Docs.flutter.dev. n.d. FAQ. [online]. Available at: https://docs.flutter.dev/re-

sources/faq#:~:text=Flutter%201.0%20was%20launched%20on,hundreds%20of%20mil-

lions%20of%20devices. [Accessed 11 June 2022].

13. Allix, K.T. F., Bissyandé, J. Klein & Traon, Y.L. (2016). AndroZoo: Collecting Millions

of Android Apps for the Research Community, 2016 IEEE/ACM 13th Working Conference

on Mining Software Repositories (MSR), 2016, 468-471. Available at: https://andro-

zoo.uni.lu/static/papers/androzoo-msr.pdf.

14. Nygård, J. (2019). Mobile application platform selection. Available at:

http://jultika.oulu.fi/files/nbnfioulu-201905242064.pdf.

https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-download
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-download
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-download
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-download
https://www.statista.com/statistics/268251/number-of-apps-in-the-itunes-app-store-since-2008/
https://www.statista.com/statistics/268251/number-of-apps-in-the-itunes-app-store-since-2008/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://dl.acm.org/doi/pdf/10.1145/3241739?casa_token=xHmNK4vGgycAAAAA:-U0oiSTHo1Jtj3Q9dyJfEEx05Oa7nL1VfyohtY8XHHEbdrGv08aD5NevctInCHcbqbM_Wmn1WtE
https://dl.acm.org/doi/pdf/10.1145/3241739?casa_token=xHmNK4vGgycAAAAA:-U0oiSTHo1Jtj3Q9dyJfEEx05Oa7nL1VfyohtY8XHHEbdrGv08aD5NevctInCHcbqbM_Wmn1WtE
https://dl.acm.org/doi/pdf/10.1145/3241739?casa_token=xHmNK4vGgycAAAAA:-U0oiSTHo1Jtj3Q9dyJfEEx05Oa7nL1VfyohtY8XHHEbdrGv08aD5NevctInCHcbqbM_Wmn1WtE
http://ceur-ws.org/Vol-2832/paper09.pdf
http://ceur-ws.org/Vol-2832/paper09.pdf
https://www.explorateglobal.com/blog/choose-mobile-app-development-framework/
https://www.explorateglobal.com/blog/choose-mobile-app-development-framework/
https://doi:%2010.14569/IJACSA.2017.080215
https://ieeexplore.ieee.org/document/7226668
https://reactnative.dev/
https://docs.flutter.dev/resources/faq%23:~:text=Flutter%201.0%20was%20launched%20on,hundreds%20of%20millions%20of%20devices
https://docs.flutter.dev/resources/faq%23:~:text=Flutter%201.0%20was%20launched%20on,hundreds%20of%20millions%20of%20devices
https://docs.flutter.dev/resources/faq%23:~:text=Flutter%201.0%20was%20launched%20on,hundreds%20of%20millions%20of%20devices
https://androzoo.uni.lu/static/papers/androzoo-msr.pdf
https://androzoo.uni.lu/static/papers/androzoo-msr.pdf
http://jultika.oulu.fi/files/nbnfioulu-201905242064.pdf

30

15. State of JS. (2021). Mobile & Desktop. Available at: https://2021.stateofjs.com/en-

US/libraries/mobile-desktop.

16. Patton, M. Q. (2002). Qualitative interviewing. Qualitative research and evaluation methods,

3, 344-347.

17. Corbin, J. & Strauss, A. (1990). Grounded Theory Research: Procedures, Canons, and

Evaluative Criteria. Qual Sociol 13, 3–21 (1990). Available at:

https://doi.org/10.1007/BF00988593.

18. Kurale, R., & Bala, K. (2021). A Comparative Study of Flutter with other Cross-Platform

Mobile Application Development. INTERNATIONAL JOURNAL OF CREATIVE

RESEARCH THOUGHTS – IJCRT, 9(12), pp. 368-372. Available at: https://ijcrt.org/pa-

pers/IJCRT2112036.pdf.

19. Android Developers. 2021. Developer Guides. [online]. Available at: https://developer.an-

droid.com/guide. [Accessed 20 June 2022].

20. Reactnative.dev. 2022. Introduction. [online]. Available at: https://reactna-

tive.dev/docs/getting-started. [Accessed 18 June 2022].

21. Docs.flutter.dev. n.d. Cookbook. [online]. Available at: https://docs.flutter.dev/cookbook.

[Accessed 17 June 2022].

22. Docs.microsoft.com. 2021. Get started with Xamarin. [online]. Available at:

https://docs.microsoft.com/en-us/xamarin/get-started/. [Accessed 12 July 2022].

23. Android Developers. 2021. User Interface & Navigation. [online]. Available at: https://de-

veloper.android.com/guide/topics/ui. [Accessed 20 June 2022].

24. Rees, J. (2020, June 3). Flutter Vs React-Native Vs Xamarin. DZone. Available at:

https://dzone.com/articles/flutter-vs-react-native-vs-xamarin

25. Android Open Source Project. n.d. Android Open Source Project. [online]. Available at:

https://source.android.com/#:~:text=An-

droid%20is%20an%20open%20source,source%20project%20led%20by%20Google. [Ac-

cessed 12 June 2022].

26. Ramos, H., 2018. Open Source Roadmap. [online]. Reactnative.dev. Available at: https://re-

actnative.dev/blog/2018/11/01/oss-roadmap. [Accessed 9 June 2022].

27. Flutter.dev. n.d. Flutter - Build apps for any screen. [online]. Available at: https://flut-

ter.dev/#:~:text=Flutter%20is%20an%20open%20source,applica-

tions%20from%20a%20single%20codebase. [Accessed 9 June 2022].

28. Microsoft.com. 2021. What is Xamarin? [online]. Available at: https://docs.mi-

crosoft.com/en-us/xamarin/get-started/what-is-xamarin. [Accessed 9 June 2022].

29. Microsoft. n.d. Pricing and Purchasing Options | Visual Studio. [online]. Available at:

https://visualstudio.microsoft.com/vs/pricing/?tab=enterprise. [Accessed 9 June 2022].

30. Stack Overflow. 2022. Stack Overflow Developer Survey 2022. [online]. Available at:

https://survey.stackoverflow.co/2022/. [Accessed 13 June 2022].

31. Insights.stackoverflow.com. 2022. Stack Overflow. [online]. Available at: https://in-

sights.stackoverflow.com/trends?tags=android%2Cflutter%2Creact-native%2Cxamarin.

[Accessed 13 June 2022].

32. Ortin, F., Zapico, D., Perez-Schofield, J. and Garcia, M., 2010. Including both static and

dynamic typing in the same programming language. IET Software, 4(4), pp.268-282. Avail-

able at: https://digital-library.theiet.org/content/journals/10.1049/iet-sen.2009.0070.

33. Reactnative.dev. 2022. Cross Platform Implementation · React Native. [online]. Available

at: https://reactnative.dev/architecture/xplat-implementation. [Accessed 14 June 2022].

34. Flutter.dev. n.d. Multi-Platform. [online]. Available at: https://flutter.dev/multi-platform.

[Accessed 11 June 2022].

https://2021.stateofjs.com/en-US/libraries/mobile-desktop
https://2021.stateofjs.com/en-US/libraries/mobile-desktop
https://doi.org/10.1007/BF00988593
https://ijcrt.org/papers/IJCRT2112036.pdf.
https://ijcrt.org/papers/IJCRT2112036.pdf.
https://developer.android.com/guide
https://developer.android.com/guide
https://reactnative.dev/docs/getting-started
https://reactnative.dev/docs/getting-started
https://docs.flutter.dev/cookbook
https://docs.microsoft.com/en-us/xamarin/get-started/
https://developer.android.com/guide/topics/ui
https://developer.android.com/guide/topics/ui
https://dzone.com/articles/flutter-vs-react-native-vs-xamarin
https://source.android.com/#:~:text=Android%20is%20an%20open%20source,source%20project%20led%20by%20Google
https://source.android.com/#:~:text=Android%20is%20an%20open%20source,source%20project%20led%20by%20Google
https://reactnative.dev/blog/2018/11/01/oss-roadmap
https://reactnative.dev/blog/2018/11/01/oss-roadmap
https://flutter.dev/#:~:text=Flutter%20is%20an%20open%20source,applications%20from%20a%20single%20codebase
https://flutter.dev/#:~:text=Flutter%20is%20an%20open%20source,applications%20from%20a%20single%20codebase
https://flutter.dev/#:~:text=Flutter%20is%20an%20open%20source,applications%20from%20a%20single%20codebase
https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin
https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin
https://visualstudio.microsoft.com/vs/pricing/?tab=enterprise
https://survey.stackoverflow.co/2022/
https://insights.stackoverflow.com/trends?tags=android%2Cflutter%2Creact-native%2Cxamarin
https://insights.stackoverflow.com/trends?tags=android%2Cflutter%2Creact-native%2Cxamarin
https://digital-library.theiet.org/content/journals/10.1049/iet-sen.2009.0070
https://reactnative.dev/architecture/xplat-implementation
https://flutter.dev/multi-platform

31

35. Microsoft.com. 2021. Xamarin.Forms supported platforms. [online]. Available at:

https://docs.microsoft.com/nl-nl/xamarin/get-started/supported-platforms?tabs=windows.

[Accessed 9 June 2022].

36. Anwar, S. (2021). Comparison and evaluation of cross-platform framework and develop-

ment of a digital health platform using selected framework. Available at: http://uu.diva-por-

tal.org/smash/get/diva2:1626535/FULLTEXT01.pdf.

37. Beladiya, K. (2021). Flutter Vs React Native Vs Xamarin – Top Cross Platform Mobile App

Development Framework. Available at: https://theonetechnologies.com/blog/post/flutter-

vs-react-native-vs-xamarin-top-cross-platform-mobile-app-development-framework.

38. mvnrepository.com. n.d. MVN Repository. [online]. Available at: https://mvnreposi-

tory.com/search?q=android&c=android. [Accessed 16 June 2022].

39. Reactnative.directory. n.d. React Native Directory. [online]. Available at: https://reactna-

tive.directory/?android=true. [Accessed 13 June 2022].

40. Dart_Flutter_Packages. n.d. pub.dev. [online]. Available at: https://pub.dev/pack-

ages?q=sdk%3Aflutter+platform%3Aandroid. [Accessed 13 June 2022].

41. Nuget.org. n.d. NuGet Gallery. [online]. Available at: https://www.nuget.org/pro-

files/Xamarin. [Accessed 13 June 2022].

42. GitHub. n.d. Android. [online]. Available at: https://github.com/android. [Accessed 10 June

2022].

43. Medium. n.d. The most insightful stories about Android - Medium. [online]. Available at:

https://medium.com/tag/android. [Accessed 17 June 2022].

44. GitHub. n.d. Code frequency facebook/react-native. [online]. Available at:

https://github.com/facebook/react-native/graphs/code-frequency. [Accessed 17 June 2022].

45. Medium. n.d. The most insightful stories about React Native - Medium. [online]. Available

at: https://medium.com/tag/react-native. [Accessed 17 June 2022].

46. GitHub. n.d. Code frequency · flutter/flutter. [online]. Available at: https://github.com/flut-

ter/flutter/graphs/code-frequency. [Accessed 17 June 2022].

47. Medium. n.d. The most insightful stories about Flutter - Medium. [online]. Available at:

https://medium.com/tag/flutter. [Accessed 17 June 2022].

48. GitHub. n.d. Pulse · xamarin/Xamarin.Forms. [online]. Available at:

https://github.com/xamarin/Xamarin.Forms/pulse. [Accessed 16 June 2022].

49. Medium. n.d. The most insightful stories about Xamarin. [online]. Available at: https://me-

dium.com/tag/xamarin. [Accessed 17 June 2022].

50. Android Developers. 2022. Meet Android Studio| Android Developers. [online]. Available

at: https://developer.android.com/studio/intro. [Accessed 16 June 2022].

51. Kaczorowski, M. (2021, October 11). The best IDEs for React Native to use in 2022.

Ideamotive. Available at: https://www.ideamotive.co/blog/the-best-ides-for-react-native.

52. Docs.flutter.dev. n.d. Set up an editor. [online]. Available at: https://docs.flutter.dev/get-

started/editor?tab=vscode. [Accessed 16 June 2022].

53. Visual Studio. n.d. Xamarin App Development with Visual Studio | Visual Studio. [online].

Available at: https://visualstudio.microsoft.com/xamarin/. [Accessed 15 June 2022].

54. www.javatpoint.com. n.d. Ionic vs Cordova - javatpoint. [online]. Available at:

https://www.javatpoint.com/ionic-vs-cordova. [Accessed 30 June 2022].

55. Statista. 2022. Cross-platform mobile frameworks used by global developers 2021| Statista.

[online]. Available at: https://www.statista.com/statistics/869224/worldwide-software-de-

veloper-working-hours/. [Accessed 18 January 2022].

56. Malavolta, I., Ruberto, S., Soru, T. and Terragni, V. (2015). Hybrid Mobile Apps in the

Google Play Store: An Exploratory Investigation. 2015 2nd ACM International Conference

https://docs.microsoft.com/nl-nl/xamarin/get-started/supported-platforms?tabs=windows
http://uu.diva-portal.org/smash/get/diva2:1626535/FULLTEXT01.pdf
http://uu.diva-portal.org/smash/get/diva2:1626535/FULLTEXT01.pdf
https://theonetechnologies.com/blog/post/flutter-vs-react-native-vs-xamarin-top-cross-platform-mobile-app-development-framework
https://theonetechnologies.com/blog/post/flutter-vs-react-native-vs-xamarin-top-cross-platform-mobile-app-development-framework
https://mvnrepository.com/search?q=android&c=android
https://mvnrepository.com/search?q=android&c=android
https://reactnative.directory/?android=true
https://reactnative.directory/?android=true
https://pub.dev/packages?q=sdk%3Aflutter+platform%3Aandroid
https://pub.dev/packages?q=sdk%3Aflutter+platform%3Aandroid
https://www.nuget.org/profiles/Xamarin
https://www.nuget.org/profiles/Xamarin
https://github.com/android
https://medium.com/tag/android
https://github.com/facebook/react-native/graphs/code-frequency
https://medium.com/tag/react-native
https://github.com/flutter/flutter/graphs/code-frequency
https://github.com/flutter/flutter/graphs/code-frequency
https://medium.com/tag/flutter
https://github.com/xamarin/Xamarin.Forms/pulse
https://medium.com/tag/xamarin
https://medium.com/tag/xamarin
https://developer.android.com/studio/intro
https://www.ideamotive.co/blog/the-best-ides-for-react-native
https://docs.flutter.dev/get-started/editor?tab=vscode
https://docs.flutter.dev/get-started/editor?tab=vscode
https://visualstudio.microsoft.com/xamarin/
https://www.javatpoint.com/ionic-vs-cordova
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/

32

on Mobile Software Engineering and Systems, 2015, pp. 56-59, https://ieeex-

plore.ieee.org/document/7283028.

57. Ashwini, A., 2017. What is the difference between React.js and React Native? | Cogni-

tiveClouds Blog. [online]. Cognitiveclouds.com. Available at: https://www.cogni-

tiveclouds.com/insights/what-is-the-difference-between-react-js-and-react-na-

tive#:~:text=performing%20UI%20layer.-

,React.,to%20render%20components%20on%20mobile. [Accessed 1 July 2022].

58. Reactnative.dev. 2022. Testing · React Native. [online]. Available at: https://reactna-

tive.dev/docs/testing-overview. [Accessed 19 June 2022].

59. Android Developers. 2021. What to test in Android | Android Developers. [online]. Availa-

ble at: https://developer.android.com/training/testing/fundamentals/what-to-test. [Accessed

19 June 2022].

60. Docs.flutter.dev. n.d. Testing Flutter apps. [online]. Available at: https://docs.flut-

ter.dev/testing. [Accessed 19 June 2022].

61. Docs.microsoft.com. 2022. Xamarin.UITest - Visual Studio App Center. [online]. Available

at: https://docs.microsoft.com/en-us/appcenter/test-cloud/frameworks/uitest/. [Accessed 19

June 2022].

https://ieeexplore.ieee.org/document/7283028
https://ieeexplore.ieee.org/document/7283028
https://www.cognitiveclouds.com/insights/what-is-the-difference-between-react-js-and-react-native#:~:text=performing%20UI%20layer.-,React.,to%20render%20components%20on%20mobile
https://www.cognitiveclouds.com/insights/what-is-the-difference-between-react-js-and-react-native#:~:text=performing%20UI%20layer.-,React.,to%20render%20components%20on%20mobile
https://www.cognitiveclouds.com/insights/what-is-the-difference-between-react-js-and-react-native#:~:text=performing%20UI%20layer.-,React.,to%20render%20components%20on%20mobile
https://www.cognitiveclouds.com/insights/what-is-the-difference-between-react-js-and-react-native#:~:text=performing%20UI%20layer.-,React.,to%20render%20components%20on%20mobile
https://reactnative.dev/docs/testing-overview
https://reactnative.dev/docs/testing-overview
https://developer.android.com/training/testing/fundamentals/what-to-test
https://docs.microsoft.com/en-us/appcenter/test-cloud/frameworks/uitest/

33

Appendix 1 Package name, SHA number, and APK download

• The package name of the app “Jumbo Extra’s” is com.jumbo.extras

• SHA256 number of the package name “Jumbo Extra’s”

• Download of APK file. The APK Key is personal and may not be distrib-

uted or made publicly available. Data cannot be redistributed without con-

sent of AndroZoo.

34

Appendix 2 Example of recognition method

• If the flutter_assets folder in the project AND the file "libflutter.so" in

"/lib/x86_64" is present, the app is developed using the Flutter framework.

35

Appendix 3 Packages

• Android packages

• React Native packages

36

• Flutter packages

• Xamarin packages

37

Appendix 4 GitHub stars

• GitHub-Android

• GitHub-React Native

38

• GitHub-Flutter

• GitHub-Xamarin

39

Appendix 5 Medium stories

• Medium-Android

• Medium-React Native

40

• Medium-Flutter

• Medium-Xamarin

41

Appendix 6 Stackoverflow

• Stackoverflow-programming languages

42

• Stackoverflow-trends

Appendix 7 Semi-structured interview

Introduction

The interview will first start with an introduction of the interviewer and interviewee.

• I will tell the interviewee what the purpose of the research is and give a brief

introduction of myself.

• The interviewee will also introduce them and explain their role within the or-

ganization.

General

• Which apps have you developed within the organization?

• For which target group you have developed these apps (B2C/B2B/Internal

use)?

• How many users are using the apps?

Content

• Which processes do you go through before choosing a mobile development

framework/architecture?

Possible follow-up questions:

o Research of similar projects

o Research of frameworks

o Feasibility studies

o Use of developer's expertise

• With which mobile development frameworks have you developed these

apps?

• Why did you choose this framework?

43

• Have you considered developing these apps in another framework (e.g., Flut-

ter, Xamarin, etc.)?

• What are the deciding factors (criteria) that you considered when choosing

the framework?

Possible follow-up questions:

o Performance

o Portability of apps (supported platforms)

o UX/UI

o Development skills

o Development cost (expected cost differences between frameworks)

o Development time

o Quality (difference in quality between the frameworks)

o Code update

o License cost

o Maintenance cost

o Security issues: Common bugs in frameworks, whether a framework is

chosen based on security

• What impact does the framework have on the quality of the product and the

development process?

• How long did it take to choose the most suitable framework?

• Do you have anything to add in terms of choosing a framework for app de-

velopment?

Note: Possible probing questions can be asked during each question to clarify or to

give an example.

Appendix 8 Survey

The full version of the survey can be found on the following pages.

Experience with mobile development

1.

Markeer slechts één ovaal.

Less than 1 year

Between 1 and 3 years

Between 3 and 5 years

More than 5 years

Processes before choosing a framework

Research in the field of mobile
development frameworks
This survey is conducted at the Vrije Universiteit Amsterdam in the field of mobile
development framework and takes approximately 5-10 minutes to complete. The title of
my research is: "Choosing the right framework for Android development: which mobile
development frameworks are chosen and why?". This survey is specially designed for
mobile developers working with Android native or mobile development frameworks such
as React Native, Flutter, Xamarin, Ionic, Cordova, or Unity.

The goal of this survey is to gain insight into the following topics:

- Experience with mobile development

- The processes before choosing a mobile development framework

- Rating of the various frameworks

- Advantages and disadvantages of mobile development frameworks

Responses from this survey will only be used for scientific purposes and will be
anonymized.

Your response to this survey is highly appreciated! Any questions or comments regarding
this research are welcome via the following email address: a.banwarie@student.vu.nl

*Vereist

How much experience do you have with mobile development in general? *

mailto:a.banwarie@student.vu.nl

2.

Anders:

Vink alle toepasselijke opties aan.

Research of similar projects
Research of frameworks
Feasibility studies
Use of developer's expertise
Use of in-house guidelines
Use of external guidelines
Comparison analysis with previous projects

3.

Markeer slechts één ovaal.

Less than 2 weeks

Between 2 and 4 weeks

Between 4 and 6 weeks

More than 6 weeks

Suppose you have to choose the most suitable framework. Which processes do
you consider when choosing a mobile development framework? Multiple
options possible:

*

How long does it take to choose the most suitable framework? *

4.

Anders:

Vink alle toepasselijke opties aan.

Performance
Target platforms
UX/UI
Development skills
Development cost
Development time
Documentation and resources
Security
App functionalities (features)
Code usability
Maintainability
License cost
Availability of libraries

Rating of the various frameworks

Suppose you have to choose the most suitable framework. Which deciding
factors do you consider the most when choosing a framework? Multiple options
possible:

*

5.

Markeer slechts één ovaal per rij.

Experience
in mobile
development
with Android
native

This section is intended for mobile developers who have
experience with Android native. If you don't have experience with
Android native, choose the option "None" and you will be
navigated to the following section.

6.

Markeer slechts één ovaal.

None Ga naar vraag 10

Less than 1 year

Between 1 and 3 years

Between 3 and 5 years

More than 5 years

Advantages and disadvantages of Android native

Suppose you would have to start a new mobile project next week. Would you
consider using the following frameworks? Choose the most relevant option:

*

Would use
again

Would not use
again

Interested
Not

interested
Never
heard

Android
native

React
Native

Flutter

Xamarin

Ionic

Cordova

Unity

Android
native

React
Native

Flutter

Xamarin

Ionic

Cordova

Unity

How much experience do you have with Android native mobile development? *

7.

Anders:

Vink alle toepasselijke opties aan.

A nice development experience
Always up to date with the latest version of Android
Android native is a mature framework
Android native apps work offline (no internet connection)
Android native development is easy to learn for mobile developers
Based on Kotlin or Java language, which is popular among mobile developers
Documentation is excellent
Easy to debug
Excellent performance
Full freedom to use features such as sensors (NFC), camera, GPS, microphone and

bluetooth
Integration with a cross-platform framework is possible
Jetpack compose makes it much faster and easier to build android native UI
Kotlin or Java are typed languages
Open source and free
Rich set of libraries
Small file size in comparison with apps developed in cross-platform frameworks
Testing is integrated and supported in Android
The possibility to build excellent UX/UI
The possibility to build fully native apps for the Android platform
Very large (active) developer community

8.

Anders:

Vink alle toepasselijke opties aan.

Code reuse is not possible for other platforms
Expensive as Android native development allows you to develop an app for one

platform (Android platform)
Live and hot reloading is not possible
No flexibility as developers must code for one platform
Time-consuming development process as Android native development allows you to

develop an app for one platform (Android platform)

What are the advantages or the things that you like about Android native?
Multiple options possible:

*

What are the disadvantages or the pain points of Android native? Multiple
options possible:

*

9.

Anders:

Vink alle toepasselijke opties aan.

Developing new apps from scratch 100% in Android native
Developing proof of concept for apps
Rebuilding apps from other frameworks to Android native
Using Android native for a personal project

Experience
in mobile
development
with React
Native

This section is intended for mobile developers who have
experience with React Native. If you don't have experience with
React Native, choose the option "None" and you will be
navigated to the following section.

10.

Markeer slechts één ovaal.

None Ga naar vraag 14

Less than 1 year

Between 1 and 3 years

Between 3 and 5 years

More than 5 years

Advantages and disadvantages of React Native

What are you using Android native for at the moment? Multiple options possible: *

How much experience do you have with React Native? *

11.

Anders:

Vink alle toepasselijke opties aan.

A nice development experience
App maintenance and updating are simplified
Based on JavaScript language, which is popular among web/mobile developers
Code reuse and pre-developed components
Cost-saving as React Native requires one team to develop apps for multiple

platforms
Documentation is good
Relatively mature for apps that use sensors (NFC), camera, GPS, microphone and

bluetooth
Fast development process
Good performance
Integration with a native application is possible
Large (active) developer community
Live and hot reloading is possible
Open source and free
React Native is a mature framework
React Native is easy to learn when you have a JavaScript background
Rich set of third-party libraries and plugins
Single codebase (time to market is fast)
The possibility to build platform-specific apps with a native look and feel

12.

Anders:

Vink alle toepasselijke opties aan.

Difficult to debug
JavaScript is a dynamic language
Large file size in comparison with native
Slightly delayed support for the latest platform updates
Some companies are reluctant to use React Native as it is supported by Meta

(Facebook)
Testing is not integrated into the framework. This is done by third-party tools and

frameworks
The native side of React Native can be challenging sometimes

What are the advantages or the things that you like about React Native?
Multiple options possible:

*

What are the disadvantages or pain points of React Native? Multiple options
possible:

*

13.

Anders:

Vink alle toepasselijke opties aan.

Developing new apps from scratch 100% in React Native
Developing proof of concept for apps
Rebuilding apps from native/other frameworks in React Native
Using React Native for a personal project

Experience
in mobile
development
with Flutter

This section is intended for mobile developers who have
experience with Flutter. If you don't have experience with Flutter,
choose the option "None" and you will be navigated to the
following section.

14.

Markeer slechts één ovaal.

None Ga naar vraag 18

Less than 1 year

Between 1 and 3 years

Between 3 and 5 years

More than 5 years

Advantages and disadvantages of Flutter

What are you using React Native for at the moment? Multiple options possible:

*

How much experience do you have with Flutter? *

15.

Anders:

Vink alle toepasselijke opties aan.

A nice development experience
App maintenance and updating are simplified
Code reuse and a widget-based framework
Cost-saving as Flutter requires one team to develop apps for multiple platforms
Dart is a typed language
Dart is easy to learn for developers
Documentation is good
Easy to debug
Relatively mature for apps that use sensors (NFC), camera, GPS, microphone and

bluetooth
Fast development process
Good performance
Hot reloading is possible
Integration with a native application is possible
Large (active) developer community
Open source and free
Rich set of third-party libraries and plugins
Single codebase (time to market is fast)
Testing is integrated and supported in the framework
The possibility to build platform-specific apps with a native look and feel

16.

Anders:

Vink alle toepasselijke opties aan.

Based on Dart language, which is not so popular among mobile developers
Dart developers are limited
Large file size in comparison with native
Live reloading is not possible
Slightly delayed support for the latest platform updates
Some companies are reluctant to use Flutter because it is still new and not so

mature yet
The native side of Flutter can be challenging sometimes

What are the advantages or the things that you like about Flutter? Multiple
options possible:

*

What are the disadvantages or pain points of Flutter? Multiple options
possible:

*

17.

Anders:

Vink alle toepasselijke opties aan.

Developing new apps from scratch 100% in Flutter
Developing proof of concept for apps
Rebuilding apps from native/other frameworks in Flutter
Using Flutter for a personal project

Experience
in mobile
development
with
Xamarin

This section is intended for mobile developers who have
experience with Xamarin. If you don't have experience with
Xamarin, choose the option "None" and you will be navigated to
the following section.

18.

Markeer slechts één ovaal.

None Ga naar vraag 22

Less than 1 year

Between 1 and 3 years

Between 3 and 5 years

More than 5 years

Advantages and disadvantages of Xamarin

What are you using Flutter for at the moment? Multiple options possible: *

How much experience do you have with Xamarin? *

19.

Anders:

Vink alle toepasselijke opties aan.

A reasonable development experience
App maintenance and updating are simplified
C# is a typed language
Code reuse and a shared .NET standard library and individual platform projects
Cost-saving as Xamarin requires one team to develop apps for multiple platforms
Documentation is good
Easy to debug
Relatively mature for apps that use sensors (NFC), camera, GPS, microphone and

bluetooth
Fast development process
Good performance
Hot reloading is possible with XAML
Integration with a native application is possible
Open source and free
Single codebase (time to market is fast)
Testing is integrated and supported in the framework
The possibility to build platform-specific apps with a native look and feel
Xamarin is easy to use if you have a C#/.NET background

What are the advantages or the things that you like about Xamarin? Multiple
options possible:

*

20.

Anders:

Vink alle toepasselijke opties aan.

Large file size in comparison with native
Live reloading is not possible
Slightly delayed support for the latest platform updates
Small (active) developer community
The native side of Xamarin can be challenging sometimes
Xamarin developers are limited
Xamarin has limited access to open-source libraries and does not support all

available third-party libraries
Xamarin is becoming less popular among mobile developers
Xamarin is open source, but for commercial purposes, you still need to pay the

license cost for Visual Studio

21.

Anders:

Vink alle toepasselijke opties aan.

Developing new apps from scratch 100% in Xamarin
Developing proof of concept for apps
Rebuilding apps from native/other frameworks in Xamarin
Using Xamarin for a personal project

Experience
in mobile
development
with Ionic

This section is intended for mobile developers who have
experience with Ionic. If you don't have experience with Ionic,
choose the option "None" and you will be navigated to the
following section.

What are the disadvantages or pain points of Xamarin? Multiple options
possible:

*

What are you using Xamarin for at the moment? Multiple options possible: *

22.

Markeer slechts één ovaal.

None Ga naar vraag 26

Less than 1 year

Between 1 and 3 years

Between 3 and 5 years

More than 5 years

Advantages and disadvantages of Ionic

23.

Anders:

Vink alle toepasselijke opties aan.

App maintenance and updating are simplified
Based on JavaScript language, which is popular among web/mobile developers
Code reuse and offers a library of components and plugins
Cost-saving as Ionic requires one team to develop apps for multiple platforms
Documentation is good
Fast development process
Integration with Angular, React, Vue, Capacitor, or Cordova frameworks
Integration with a native application is possible
Ionic is easy to learn when you have a JavaScript, HTML, and CSS background
Live reloading is possible
Open source and free
Rich set of third-party libraries and plugins
Single codebase (time to market is fast)

How much experience do you have with Ionic? *

What are the advantages or the things that you like about Ionic? Multiple
options possible:

*

24.

Anders:

Vink alle toepasselijke opties aan.

A poor to reasonable development experience
Difficult to debug
Hot reloading is not possible
Ionic app is a mobile website rendered into a mobile app (no native look and feel)
Ionic is becoming less popular among mobile developers
JavaScript is a dynamic language
Large file size in comparison with native
Not so mature for apps that use sensors (NFC), camera, GPS, microphone and

bluetooth
Poor performance
Slightly delayed support for the latest platform updates
Small (active) developer community
Testing is not integrated into the framework. This is done by third-party tools and

frameworks

25.

Anders:

Vink alle toepasselijke opties aan.

Developing new apps from scratch 100% in Ionic
Developing proof of concept for apps
Rebuilding apps from native/other frameworks in Ionic
Using Ionic for a personal project

Experience
in mobile
development
with
Cordova

This section is intended for mobile developers who have
experience with Cordova. If you don't have experience with
Cordova, choose the option "None" and you will be navigated to
the following section.

What are the disadvantages or pain points of Ionic? Multiple options possible: *

What are you using Ionic for at the moment? Multiple options possible: *

26.

Markeer slechts één ovaal.

None Ga naar vraag 30

Less than 1 year

Between 1 and 3 years

Between 3 and 5 years

More than 5 years

Advantages and disadvantages of Cordova

27.

Anders:

Vink alle toepasselijke opties aan.

App maintenance and updating are simplified
Based on JavaScript language, which is popular among web/mobile developers
Code reuse and offers a library of components and plugins
Cordova is easy to learn when you have a JavaScript, HTML, and CSS background
Cost-saving as Cordova requires one team to develop apps for multiple platforms
Documentation is good
Fast development process
Integration with Angular, React, Vue, and Ionic frameworks
Integration with a native application is possible
Live and hot reloading is possible
Open source and free
Rich set of third-party libraries and plugins
Single codebase (time to market is fast)

How much experience do you have with Cordova? *

What are the advantages or the things that you like about Cordova? Multiple
options possible:

*

28.

Anders:

Vink alle toepasselijke opties aan.

A poor to reasonable development experience
Cordova app is a mobile website rendered into a mobile app (no native look and

feel)
Difficult to debug
JavaScript is a dynamic language
Large file size in comparison with native
Not so mature for apps that use sensors (NFC), camera, GPS, microphone and

bluetooth
Poor performance
Slightly delayed support for the latest platform updates
Small (active) developer community
Some companies are reluctant to use Cordova as it is becoming less popular for

mobile development
Testing is not integrated into the framework. This is done by third-party tools and

frameworks

29.

Anders:

Vink alle toepasselijke opties aan.

Developing new apps from scratch 100% in Cordova
Developing proof of concept for apps
Rebuilding apps from native/other frameworks in Cordova
Using Cordova for a personal project

Experience
in mobile
development
with Unity

This section is intended for mobile developers who have
experience with Unity. If you don't have experience with Unity,
choose the option "None" and you can complete the survey.

What are the disadvantages or pain points of Cordova? Multiple options
possible:

*

What are you using Cordova for at the moment? Multiple options possible: *

30.

Markeer slechts één ovaal.

None

Less than 1 year

Between 1 and 3 years

Between 3 and 5 years

More than 5 years

Advantages and disadvantages of Unity

31.

Anders:

Vink alle toepasselijke opties aan.

A nice development experience
App maintenance and updating are simplified
Code reuse and offers an asset store for all developers to fulfill their app/game

requirements
Cost-saving as Unity requires one team to develop apps/games for multiple

platforms
Documentation is good
Easy to debug
Famous cross-platform framework for game development, virtual reality or

augmented reality, etc.
Fast development process
Good performance
Integration with a native application is possible
Large (active) developer community
Rich set of third-party libraries and plugins
Single codebase (time to market is fast)
Testing is integrated and supported in the framework
Unity is easy to use if you have a C#/.NET and JavaScript background
Unity supports high-quality audio and visual effects

How much experience do you have with Unity? *

What are the advantages or the things that you like about Unity? Multiple
options possible:

*

32.

Anders:

Vink alle toepasselijke opties aan.

Large file size in comparison with native
Not open source for commercial purposes, license cost needs to be paid
Slightly delayed support for the latest platform updates
Unity is not ideal for non-visual apps

33.

Anders:

Vink alle toepasselijke opties aan.

Building new apps/games from scratch 100% in Unity
Developing proof of concept for apps/games
Rebuilding apps/games from native or other frameworks in Unity
Using Unity for a personal project

34.

Markeer slechts één ovaal.

Anders:

Yes, these costs would prevent me from recommending Unity

No, I would still recommend Unity

Deze content is niet gemaakt of goedgekeurd door Google.

What are the disadvantages or pain points of Unity? Multiple options possible: *

What are you using Unity for at the moment? Multiple options possible: *

The Unity framework has license cost (Plus $399/yr per seat, Pro $1800/yr per
seat and Enterprise $4000/mo per 20 seats). Would this cost prevent you from
recommending this framework for developing mobile apps/games?

*

 Formulieren

https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms

	Master_Thesis_A.Banwarie_FINAL
	Research in the field of mobile development frameworks - Google Formulieren

