
	
	

	

Master	Thesis	

Understanding	Legacy	Software:	The	Current	Relevance	of	COBOL	

	

	

	

by	

Ashish	Upadhaya	

2560152/AUA800	

	

	

	

	

First	supervisor:			 Dr.	Sieuwert	van	Otterloo	

Second	reader:		 Dr.	Joost	Schalken-Pinkster	

	
	

	

	

December	4,	2023	

	

	

	

	

Submitted	in	partial	fulfillment	of	the	requirements	for	the	VU	degree	of	Master	of	

Science	in	Information	Sciences	

	

	
	

2	
	

Abstract	
In	 the	 ever-evolving	 landscape	 of	 technology,	 the	 persistent	 shortage	 of	 COBOL	 experts	 has	
emerged	 as	 a	 critical	 challenge	 for	 industries	 relying	 on	 COBOL	 programming	 language.	 As	
organizations	grapple	with	the	need	to	maintain	and	modernize	their	COBOL-based	systems,	the	
scarcity	of	skilled	professionals	becomes	a	pivotal	factor	impacting	efficiency	and	innovation.	This	
research	 delves	 into	 the	 result	 of	 the	 ongoing	 shortage	 of	 COBOL	 experts,	 exploring	 its	
implications	on	businesses	and	potential	strategies	to	address	this	concern.	

To	provide	 a	 comprehensive	understanding,	 this	 study	 focuses	 on	 the	 relevance	 of	 COBOL	 in	
today's	 tech	world,	utilizing	a	Dutch	Leading	bank	as	a	case	study.	Various	research	methods,	
including	literature	review,	interviews,	and	testing	of	different	programs	in	different	compilers	
have	been	employed	to	examine	its	current	uses	and	applications.	This	approach	contributes	to	
the	existing	discourse	by	offering	a	 in	depth	understanding	on	COBOL,	addressing	the	gaps	 in	
recent	studies	that	have	not	adequately	explored	its	significance.	

A	 case	 study	 was	 undertaken	 to	 examine	 the	 utilization	 of	 COBOL	 in	 a	 leading	 bank	 in	 the	
Netherlands,	 revealing	 insights	 into	 the	 particular	 applications	 of	 COBOL	within	 the	 banking	
system	and	the	challenges	faced	by	the	bank	in	utilizing	this	programming	language.	The	findings	
from	 the	 case	 study	highlighted	specific	ways	 in	which	COBOL	 is	 employed	within	 the	bank's	
operations	and	the	challenges	bank	is	facing	with	COBOL.	

Additionally,	 the	 job	market	 research	 offered	 an	 overview	 of	 the	 current	 demand	 for	 COBOL	
expertise.	The	results	of	the	job	market	research	shed	light	on	the	industries	and	areas	where	
COBOL	skills	are	particularly	sought	after	and	that	there	is	demand	for	COBOL	expertise.		

Simultaneously,	an	investigation	into	available	educational	resources	for	COBOL	was	conducted	
to	evaluate	the	accessibility	of	learning	materials.	This	examination	aimed	to	determine	whether	
there	are	sufficient	resources	to	facilitate	effective	knowledge	transfer	and	skill	development	in	
COBOL.		 	

The	findings	contribute	to	a	comprehensive	understanding	of	the	landscape	surrounding	COBOL,	
encompassing	 its	 practical	 applications,	 demand	 in	 the	 job	market,	 and	 the	 educational	 tools	
available	 for	 those	 looking	 to	acquire	proficiency	 in	 the	 language.	Additionally,	 the	study	 lists	
educational	resources	available	to	learn	COBOL,	aiming	to	bridge	the	education	gap	and	further	
contribute	to	the	understanding	of	this	essential	programming	language.	

Keywords:	 COBOL,	 JCL,	 Mainframe,	 Continues	 Relevance,	 Financial	 sector,	 Data	 Processing	
Capabilities,	Professional	Skill	Shortage,	Infrastructure	Modernization,	Technological	Challenges.	

	
	

3	
	

Table	of	contents		
1.	 Introduction	and	Historical	Overview	of	COBOL	..	4	

1.1	 Introduction	...	4	

1.2	 History	of	COBOL	..	5	
1.2.1	The	Y2K	Problem	..	8	

1.3	 The	Current	Programming	Landscape	...	10	
1.3.1	 Current	Applications	of	COBOL	..	11	
1.3.2	 IBM	release	cycle	..	12	

2.	 Research	questions	and	methodology	...	13	

2.1	 Research	Questions	..	13	

2.2	 Methodology	...	13	

3.	 Results	and	analysis	..	16	

3.1	 Current	use	and	application	of	COBOL	..	16	
3.1.1	 Popularity	of	Programming	Languages	..	16	
3.1.2	 Current	COBOL	job	market	...	17	

3.2	 Case	Study	findings:	COBOL	Usage	in	a	Leading	Dutch	Bank	19	
3.2.1	 Suggestions	from	case	study	..	22	

3.3	 Modernization	of	COBOL	..	23	
3.3.1	 Dealing	with	COBOL	Programs:	Language	migration	vs	Platform	migration	23	
3.3.2	 The	Challenge	of	Maintaining	Legacy	COBOL	Code	and	Transitioning	Away	from	COBOL	27	
3.3.3	 Transforming	Strategies	and	Modernizing	COBOL	Applications	...	28	

3.4	 COBOL	Learning	...	29	
3.4.1	 Exploration	of	COBOL	resources	..	29	
3.4.2	 Available	Online	Resources	..	30	

3	 Conclusion	...	34	

4	 Limitations	and	Further	Research	...	35	

5.1	 Limitations	..	35	

5.2	 Further	research	...	36	

5	 References	...	37	

6	 Appendices	..	41	
	
	

	
	

4	
	

1. Introduction	and	Historical	Overview	of	COBOL	

1.1 Introduction	
Programming	languages	serve	as	the	foundational	pillars	for	software	development,	with	their	
evolution	 significantly	 changing	 our	 interaction	 paradigm	 with	 computers.	 Among	 the	
programming	 languages	 that	have	been	developed	over	 time,	COBOL	holds	a	unique	position,	
having	contributed	to	the	evolution	of	programming	languages.	Originally	designed	to	meet	the	
needs	of	business	applications,	COBOL	quickly	gained	popularity	due	to	its	user-friendly	nature	
and	efficiency	(Ensmenger,	2011).		

While	COBOL's	historical	importance	has	been	extensively	examined,	encompassing	its	pivotal	
role	 in	 resolving	 the	 Y2K	 issue,	 addressing	 migration	 challenges,	 and	 acknowledging	 its	
significance	 in	 the	 business	 sector,	 there	 is	 a	 noticeable	 gap	 in	 recent	 academic	 literature	
specifically	focusing	on	the	current	relevance	of	COBOL.	Nevertheless,	it	remains	a	highly	popular	
language.	COBOL's	enduring	popularity	can	be	attributed	to	 its	consistent	updates,	 tailored	to	
meet	evolving	business	needs.	Scot	Nielsen,	Director	of	Product	Management	for	COBOL	at	Micro	
Focus,	underscores	the	resilience	of	systems	developed	decades	ago,	emphasizing	their	continued	
effective	operation.	This	not	only	eliminates	 the	necessity	 to	discard	and	start	a	new	but	also	
encourages	a	seamless	process	of	building	upon	the	existing	foundation	(Wayner,	2022).			

In	today's	landscape,	COBOL	continues	to	play	a	crucial	role	in	industries	that	prioritize	reliability,	
efficiency,	scalability,	and	compatibility	(Varie,	2023).	Yet,	companies	are	considering	updating	
their	systems	and	embracing	alternative	programming	languages	or	platforms	to	keep	up	with	
the	changing	business	needs	and	customer	expectations.	However,	 	 they	encounter	challenges	
migrating	 to	 newer	 platforms	 associated	 with	 COBOL	 due	 to	 skill	 shortage	 and	 high	 cost	 of	
migration	(Varie,	2023;	Sneed,	2009;	Ciborowska	et	al.,	2021).	To	tackle	these	challenges,	certain	
organizations	are	exploring	strategies	to	transition	from	COBOL	to	alternative	languages	like	Java	
or	C#	(Dorninger	et	al.,	2017;	Suganuma	et	al.,	2008;	Sneed,	2013;	Van	Assen	et	al.,	2023).	This	
often	 involves	 leveraging	 automated	 conversion	 tools	 or	 adopting	 cloud-based	 solutions	
(Basetech,	2023;	Astadia,	2023;	The	Cloud	for	Mainframe	&	COBOL:	Migration	&	Modernization,	
2023;).	Alternatively,	some	organizations	are	focusing	on	strengthening	the	COBOL	proficiency	
of	 their	 current	 or	 incoming	workforce.	 This	 is	 achieved	 through	 initiatives	 such	 as	 training	
programs	on	work	as	95	percent	of	all	COBOL	runs	on	mainframes,	COBOL	is	best	taught	side-by-
side	with	mainframe	computing	(No,	COBOL	Is	Not	a	Dead	Language,	2021).		

In	the	academic	context,	particularly	within	Dutch	universities,	a	notable	gap	exists	in	educational	
resources	dedicated	to	COBOL,	as	no	specific	programs	for	this	language	are	currently	offered.	
This	 gap	 can	 be	 traced	 back	 to	 the	 emergence	 of	 new	 programming	 languages.	 As	 new	
programming	 languages	and	technologies	emerged,	 there	were	predictions	that	COBOL	would	

	
	

5	
	

become	 obsolete	 and	 decline	 in	 popularity.	 Despite	 the	 challenges	 of	 emerging	 programming	
languages,	 COBOL	 persists	 due	 to	 its	 remarkable	 stability,	 even	 though	 the	 contemporary	
preference	 for	 flexible	 applications	 has	 contributed	 to	 its	 declining	 popularity	 (Asay,	 2018).	
However,	 the	 ongoing	 demand	 for	 COBOL	 expertise,	 especially	 in	 pivotal	 tasks	 such	 as	
maintaining	or	even	migrating	legacy	systems,	has	reignited	discussions	about	the	importance	of	
introduction	of	COBOL	in	education	(Thibodeau,	2013;	Reis,	2021).	

This	thesis	is	set	out	to	fill	the	gaps	in	recent	COBOL	research	addressed,	with	a	specific	focus	on	
the	 relevance	 of	 COBOL.	 Its	 exploration	 will	 encompass	 the	 historical	 context	 of	 COBOL,	 its	
current	applications,	the	challenges	associated	with	transitioning	away	from	it,	and	the	available	
educational	resources.	The	aim	is	 to	provide	valuable	 insights	 to	academics	about	 the	current	
relevance	of	COBOL	and	to	find	out	if	there	are	enough	resources	to	learn	Cobol	as	there	is	lack	of	
institution	 that	 teach	 COBOL.	 It	 is	 also	 expected	 that	 this	 research	 will	 stimulate	 increased	
interest	among	academic	 in	 the	programming	domain	of	COBOL.	Through	 the	presentation	of	
data	and	the	emphasis	on	the	continued	relevance	of	COBOL	in	today's	IT	landscape,	an	effort	is	
made	to	shine	a	light	on	the	crucial	role	COBOL	plays	in	the	current	IT	landscape.	

1.2 History	of	COBOL	
Before	 delving	 into	 the	 current	 relevance	 of	 COBOL,	 it	 is	 important	 to	 have	 a	 thorough	
understanding	of	its	historical	development.	This	includes	investigating	its	inception,	identifying	
the	 individuals	 responsible	 for	 its	 development,	 assessing	 its	 initial	 areas	 of	 application,	 and	
examining	other	significant	historical	milestones	that	have	collectively	 led	to	COBOL's	current	
form	and	relevance.	

COBOL,	or	Common	Business	Oriented	Language,	was	created	in	the	late	1950s	as	a	collaborative	
effort	among	government,	academic	institutions,	and	the	computing	industry.	 Its	development	
was	primarily	driven	by	the	urgent	requirement	for	a	universal	high-level	language	that	could	be	
used	for	diverse	business	applications	on	numerous	computers	(Kappelman,	2000).	The	lack	of	
compatibility	among	different	computer	systems	was	a	significant	challenge	for	businesses	that	
needed	to	move	data	and	programs	from	one	system	to	another.	As	a	universal	language,	COBOL	
promised	a	solution	to	this	crisis	(Kappelman,	2000).	

Grace	 Hopper,	 a	 distinguished	 computer	 scientist	 and	 naval	 officer,	 is	 often	 linked	 with	 the	
development	 of	 COBOL.	Her	work	 in	 developing	 the	 first	 compiler	 for	 an	 early	 programming	
language	 established	 the	 foundation	 for	 COBOL's	 capabilities	 as	 a	 cross-platform	 language.	
Hopper	played	a	crucial	role	in	defining	COBOL's	specifications	and	in	its	implementation.	Hopper	
passionately	advocated	for	the	use	of	programming	languages	by	a	wider	audience,	encompassing	
business	experts	and	government	officials	(Silverberg,	1996).	

	
	

6	
	

Before	 COBOL,	 businesses	 relied	 primarily	 on	 machine	 or	 assembly	 languages,	 which	 were	
difficult	to	write,	understand,	and	maintain.	COBOL's	development	was	facilitated	by	the	desire	
for	a	more	understandable	and	maintainable	 language	 that	 closely	 resembled	human	English.	
Another	 key	 factor	 was	 the	 demand	 for	 standardization,	 ensuring	 that	 business	 applications	
could	be	portable	by	using	the	same	programming	language	across	various	computer	systems	
(Ensmenger,	 2011).	 “A	 1959	 survey	 had	 found	 that	 in	 any	 data	 processing	 installation,	 the	
programming	cost	US$800,000	on	average	and	that	translating	programs	to	run	on	new	hardware	
would	cost	$600,000”	(“Grace	Hopper	and	the	Invention	of	the	Information	Age,”	2010,	p.	282).		

FLOW-MATIC,	 an	 early	 English-like	 data	 processing	 language	 built	 for	 the	 UNIVAC	 I,	 was	 a	
forerunner	to	COBOL.	Behind	its	development	was	Grace	Hopper.	When	COBOL	was	on	its	way,	
the	success	of	FLOW-MATIC	demonstrated	the	potential	of	including	English-like	statements	in	
programming	languages.	As	a	result,	much	of	COBOL's	inspiration	and	specific	features	came	from	
FLOW-MATIC,	with	Grace	Hopper	playing	a	key	role	in	COBOL's	development	due	to	her	prior	
expertise	 (Sammet,	 1978;	 Ensmenger,	 2011).	 The	 Conference	 on	Data	 Systems	 Languages,	 or	
CODASYL,	 was	 founded	 in	 1959	 to	 direct	 the	 development	 of	 COBOL	 and,	 later,	 to	 provide	
standards	 for	other	 IT	disciplines.	CODASYL	was	born	with	 the	 support	of	 the	Department	of	
Defence,	which	was	eager	to	have	a	standardized	business	language	(Ensmenger,	2011).	COBOL	
arose	 in	 response	 to	 the	 business	world's	 desire	 for	 a	 standardized,	 high-level	 programming	
dialect.	FLOW-MATIC's	roots	and	CODASYL's	stewardship	were	critical	 in	influencing	COBOL's	
trajectory	(Ensmenger,	2011).	

From	the	beginning,	COBOL	was	designed	to	be	accessible	to	business	individuals	with	little	to	no	
programming	experience.	 Its	design	prioritized	business	needs,	with	 features	such	as	decimal	
arithmetic	support	and	the	ability	to	handle	large	data	files.	The	language	quickly	became	popular	
and	emerged	as	the	top	choice	for	business	applications.	During	the	1960s	and	1970s,	COBOL	was	
recognized	as	the	most	extensively	used	programming	language	globally	(Glass,	1997).		

COBOL's	historical	journey	has	been	shaped	by	various	influential	developments,	with	one	pivotal	
turning	point	being	the	ground-breaking	"GOTO	considered	harmful"	letter	by	Edgar	W.	Dijkstra,	
published	 in	 1968	 (Dijkstra,	 1968).	 This	 letter	 had	 a	 profound	 impact	 on	 the	 software	
development	community,	including	COBOL.	Dijkstra's	challenge	to	the	unrestricted	use	of	GOTO	
statements	 in	 programming	 languages	 inspired	 a	 change	 in	 thinking	 toward	 structured	
programming	 principles.	 While	 COBOL	 initially	 allowed	 GOTO	 statements	 for	 flow	 control,	
modern	COBOL	programming	now	emphasizes	structured	control	flow	constructs	like	PERFORM,	
IF-ELSE,	and	EVALUATE,	promoting	code	readability	and	maintainability	in	line	with	Dijkstra's	
vision.		

	
	

7	
	

In	COBOL,	the	use	of	‘GO	TO’	statements	are	typically	avoided	due	to	a	variety	of	problems.	These	
statements	can	create	"spaghetti	code,"	which	is	complex	and	difficult	to	follow,	making	it	tough	
to	track	the	flow	of	the	program.	This	complexity	also	makes	maintenance	and	debugging	harder,	
as	minor	modifications	can	lead	to	unforeseen	results.	‘Go	TO’	statements	also	elevate	the	risk	of	
errors	by	potentially	causing	execution	jumps	that	may	result	in	infinite	loops	or	missed	steps.	
Furthermore,	these	statements	disrupt	the	clean	structure	of	the	code,	resulting	in	a	format	that	
is	hard	to	read	and	interpret.	To	emphasize	this,	refer	to	Appendix	2	which	includes	two	sets	of	
programs:	 'GOTO1'	 and	 'GOTO2',	 along	with	 their	 structured	 solutions	 'GOTO1	 Solution'	 and	
'GOTO2	solution'.	Each	set	illustrates	how	code	can	be	improved	by	avoiding	‘Go	To’	statements,	
thereby	enhancing	readability	and	maintainability.	

Although	 legacy	 COBOL	 code	 may	 still	 contain	 remnants	 of	 GOTO	 statements,	 COBOL	 codes	
prevented	use	by	developing	practices	prioritizing	organized	and	efficient	 code,	 aligning	with	
broader	software	engineering	trends	(Marcotty	&	Ledgard,	1986).	Nevertheless,	COBOL's	path	to	
success	faced	challenges,	including	criticism	for	its	verbosity	and	limited	support	for	structured	
programming	 constructs.	 Yet,	 COBOL	 displayed	 adaptability,	 continuously	 growing,	 and	
improving	with	the	release	of	newer	versions	(Murach,	2001).	Another	important	development	
in	the	history	of	COBOL	was	the	Y2k	problem.	COBOL	emerged	in	an	era	where	computer	memory	
was	 both	 a	 coveted	 and	 costly	 commodity.	 A	 common	 programming	 practice,	 born	 out	 of	
necessity,	was	to	represent	years	with	only	two	digits	in	date	fields,	a	decision	that	would	later	
have	 far-reaching	 implications.	This	 led	 to	 the	 infamous	Year	2000	problem	or	Y2K	problem,	
where	 COBOL	 systems,	 extensively	 used	 in	 businesses	 and	 governments	 worldwide,	 were	
particularly	susceptible.	

This	memory-saving	 practice	 posed	 no	 issues	 until	 the	 arrival	 of	 the	 new	millennium,	which	
introduced	a	significant	ambiguity:	'00'.	Without	a	clear	century	prefix,	'00'	could	be	misread	as	
1900	or	2000.	This	misinterpretation	could	 lead	 to	catastrophic	 results	 in	applications	where	
accurate	 data	 interpretation	 was	 crucial,	 such	 as	 banking	 systems	 calculating	 interest	 or	
operations	where	chronological	order	mattered.	

To	 counter	 the	 impending	 Y2K	 crisis,	 organizations	 globally	 undertook	 significant	 efforts	 to	
rectify	the	issue	in	their	software	systems.	This	often	meant	manually	reviewing	and	modifying	
countless	 lines	 of	 COBOL	 code,	 representing	 a	 significant	 investment	 of	 time,	 resources,	 and	
capital	(Bennatan,	1997).	

Despite	 worldwide	 efforts,	 concerns	 about	 system	 failures	 remained	 as	 the	 new	millennium	
approached.	Thankfully,	due	to	the	collective	efforts	of	the	software	community	to	tackle	the	Y2K	
bug,	 the	 anticipated	 widespread	 disasters	 were	 avoided.	 This	 Y2K	 crisis	 and	 COBOL-related	
challenges	 highlight	 the	 importance	 of	 strategic	 planning,	 skill	 preservation,	 and	 continuing	

	
	

8	
	

maintenance	for	legacy	systems	such	as	COBOL.	Businesses	can	use	these	insights	to	overcome	
the	current	COBOL	programming	shortage	by	 investing	 in	education,	 training,	documentation,	
and	a	long-term	view	of	COBOL's	role	in	their	technology	ecosystem.	Despite	the	Y2K	and	GOTO	
issue	hurdles,	COBOL	has	experienced	substantial	advancements	throughout	its	lifespan.	Figure	
1	highlights	the	major	developments	in	COBOL’s	history	(Glen,	2022).		

To	conclude,	COBOL	was	designed	to	standardize	business	applications	across	different	computer	
systems.	 Despite	 its	 initial	 obstacles,	 it	 rose	 to	 dominate	 the	 realm	 of	 business	 applications,	
maintaining	its	prominence	today.	However,	the	growing	age	of	COBOL	systems	and	the	scarcity	
of	professional	programmers	are	raising	formidable	challenges	for	organizations	that	depend	on	
these	 systems.	 Regardless,	 COBOL's	 influential	 role	 in	 the	 computing	 world	 is	 certain	 and	
continues	to	rule	the	global	economy	(Jones,	1997).		

	

	
	
	
	
	

	

1.2.1	The	Y2K	Problem	
As	 already	 shortly	 mentioned	 in	 the	 previous	 section,	 the	 Y2K	 problem,	 also	 known	 as	 the	
millennium	bug,	was	 a	widespread	 issue	 linked	 to	 the	way	 calendar	 data	was	 formatted	 and	
stored	in	computer	systems.	Specifically,	many	older	systems,	such	as	those	written	in	COBOL,	
used	two-digit	representations	for	years	to	conserve	memory	(for	instance,	'99	for	1999).	This	
practice	introduced	ambiguity	with	the	arrival	of	the	year	2000,	as	'00	could	be	misconstrued	as	
either	1900	or	2000.		
	
	
	
	
	
	
	
	

Figure	1.	History	of	COBOL,	Source:	TechTarget(2022)	

	
	

9	
	

Below	is	a	simple	COBOL	program	that	illustrates	the	Y2K	problem:	
Original	Code	(Y2K	Problem)	

	

	
The	program	prints	all	years	in	2	digits,	which	poses	a	problem	when	distinguishing	between	the	
years	1900	and	2000.	For	example,	the	year	2000	would	be	displayed	as	"00,"	leading	to	potential	
dysfunctions	in	certain	systems.	The	inability	to	differentiate	between	these	two	critical	periods	
could	have	profound	consequences	for	the	program's	accuracy	and	reliability.	

To	address	the	Y2K	problem,	systems	must	be	upgraded	to	handle	four-digit	years.	Below	is	a	
corrected	program	version	that	resolves	the	Y2K	problem:	
	

Improved	Code	(Y2K	Solution)	

	
	

Output	

	
The	updated	version	can	handle	years	 from	0000	to	9999	without	any	confusion,	providing	a	
basic	solution	for	dealing	with	the	Y2K	problem.	However,	it	often	required	significant	efforts	as	
it	necessitated	software	code	and	data	storage	changes.	In	Appendix	2	one	more	Y2K	problem	has	
been	tested	and	a	solution	to	that	problem	is	given.	Many	programs	were	able	to	generate	4-digit	
dates,	however,	programmers	failed	to	add	an	exception	for	years	after	1999.	This	oversight	led	
to	system	malfunctions,	outputting	dates	like	1900,	1901,	and	1902	instead	of	2000,	2001,	and	
2002,	respectively.	

Output	

	

	
	

10	
	

	
The	immediate	solution	to	the	Y2K	problem	involved	comprehensive	inspection	and	modification	
of	the	affected	code.	Organisations	initiated	thorough	systems	audits,	pinpointing	where	dates	
were	processed	or	stored.	The	necessary	modifications	frequently	included	extending	two-digit	
year	fields	to	four	digits	and	adjusting	related	computations	(Kappelman,	2000).		

Returning	 to	 the	 COBOL	 example,	 the	 Y2K	 problem	 in	 the	 original	 program	 originated	 from	
representing	years	with	only	two	digits	and	assuming	the	century	to	be	'19'.	This	could	result	in	
misunderstandings,	such	as	interpreting	the	year	 '30'	as	 '1930'	 instead	of	 '2030’.	(Kappelman,	
2000).	While	the	solution	seems	straightforward,	 the	practical	challenges	 lay	 in	the	volume	of	
legacy	 code	 that	 needed	 inspection	 and	 modification.	 These	 changes	 also	 necessitated	
corresponding	modifications	in	data	storage	and	databases	to	handle	four-digit	years.	Moreover,	
meticulous	testing	was	required	to	ensure	these	changes	did	not	spawn	new	bugs	(Kappelman,	
2000).	Automated	tools	were	also	developed	to	facilitate	this	process,	which	could	identify	and	
modify	date-related	code	such	as	CA-Fix/2000	(Ricciuti,	1998).	 “Highly	 touted	and	automated	
Y2K	tools	also	typically	fell	somewhat	short	of	expectations,	and	caused	more	manual	assessment,	
renovation,	and	testing	work	than	had	been	planned”	(Young,	2000).	

To	sum	up,	the	Y2K	problem	was	resolved	through	a	systematic	process	of	identifying	affected	
systems,	remediating	code	to	expand	date	representations,	rigorous	testing,	global	coordination,	
automated	tools,	and	public	awareness	campaigns.	The	key	lessons	from	this	experience	include	
the	 need	 for	 proactive	 risk	 assessment,	 comprehensive	 testing	 of	 critical	 systems,	 effective	
collaboration	among	stakeholders,	regulatory	frameworks,	legacy	system	modernization,	public	
awareness,	and	continuous	monitoring.	These	 lessons	underscore	the	 importance	of	proactive	
risk	management,	collaborative	efforts,	and	sustained	diligence	to	prevent	and	mitigate	potential	
crises	in	the	ever-evolving	technology	landscape,	ensuring	the	reliability	and	security	of	critical	
systems	in	the	future.	

1.3 The	Current	Programming	Landscape	
Government	 organisations,	 particularly	 in	 the	 United	 States,	 use	 COBOL	 systems	 for	
administrative	 duties	 and	 record-keeping	 tasks.	 For	 example,	 social	 security,	 taxation,	 and	
unemployment	benefits	systems	still	heavily	rely	on	COBOL	(CNN,	2020).	These	sectors	highlight	
COBOL's	persistent	 significance	 in	modern	 software	ecosystems.	Even	 though	 the	 rise	of	new	
programming	 languages	 offers	 increased	 flexibility,	 COBOL's	 stronghold	 remains	 evident,	
particularly	 in	 industries	 that	 demand	 data-intensive	 operations	 and	 high	 reliability.	 The	
associated	 costs,	 complexity,	 and	 risks	 of	 migrating	 from	 COBOL	 to	 newer	 systems	 further	
substantiate	its	ongoing	relevance	(Sneed,	2013).		

	
	

11	
	

COBOL	is	not	the	first	pick	for	creating	new	applications,	but	it	is	vital	for	many	existing	systems	
in	industries	that	manage	a	lot	of	data	or	transactions.	The	ongoing	use	of	COBOL	comes	from	a	
few	key	reasons.	First	off,	there	is	a	massive	amount	of	COBOL	code	out	there	–	there	are	hundreds	
of	billions	of	lines	-	that	run	systems	vital	for	businesses	worldwide	(Today’s	Business	Systems	
Run	on	COBOL,	2021).		

Secondly,	COBOL	is	not	inherently	more	reliable	or	better	than	
other	programming	languages,	its	reliability	is	enhanced	when	
deployed	within	the	mainframe	environment.	Mainframes	are	
a	preferred	choice	for	businesses	where	system	reliability	is	
critical.	 A	 combination	 of	 hardware	 redundancy,	 fault	
tolerance,	 high	 availability	 features,	 and	 robust	 operating	
systems	 makes	 it	 a	 preferred	 choice	 worldwide	 (Today’s	
Business	Systems	Run	on	COBOL,	2021).	

Thirdly,	 according	 to	 the	 Popularity	 of	 Programming	
Language	 (PYPL),	 COBOL	 holds	 the	 28th	 position	 among	
programming	 languages	globally	as	shown	in	Figure	2.	 	 It	 is	
created	 by	 analysing	 how	 often	 language	 tutorials	 are	
searched	on	Google.	Figure	2	indicates	that	in	the	last	year,	the	
demand	 for	 COBOL	 programmers	 has	 not	 decreased	 which	
again	indicates	the	importance	and	relevance	of	this	language	
(PYPL	Popularity	of	Programming	Language	Index,	2023).		

1.3.1 Current	Applications	of	COBOL	
COBOL	 remains	 crucial	 in	 various	 modern	
information	 systems.	 According	 to	 Enlyft	
there	 are	 40626	 companies	worldwide	 that	
still	use	COBOL,	of	which	7466	are	based	 in	
the	United	 States	 of	America	 (Enlyft,	 2023).	
Its	enduring	relevance	can	be	attributed	to	its	
robustness,	 efficiency	 in	 processing	 data-
intensive	 operations,	 and	 the	 risks	 of	
transitioning	from	established	legacy	systems	
to	newer	technologies.	If	we	are	after	speed,	
COBOL	is	clearly	the	fastest	at	handling	data	
(Cave	et	al.,	2017).	Figure	3	illustrates	the	largest	systems	running	on	COBOL,	based	on	data	from	
2013.	According	to	Micro	Focus,	the	number	of	lines	of	COBOL	code	has	grown	to	a	range	of	775-

Figure	2.	Programming	language	market	
share	(PYPL,	2023)	

Figure	3.	COBOL	current	use	in	the	industries,			
Source:	MicroFocus,	2023	

	
	

12	
	

850	billion	by	2023.	Nevertheless,	this	figure	provides	a	clear	depiction	of	the	ongoing	prevalence	
of	COBOL	applications,	suggesting	that	its	replacement	is	not	forthcoming	soon.	

These	sectors	highlight	COBOL's	persistent	 significance	 in	modern	software	ecosystems.	Even	
though	the	rise	of	new	programming	languages	offers	increased	flexibility,	COBOL's	stronghold	
remains	 evident,	 particularly	 in	 industries	 that	 demand	 data-intensive	 operations	 and	 high	
reliability.	The	associated	costs,	complexity,	and	risks	of	migrating	from	COBOL	to	newer	systems	
further	substantiate	its	ongoing	relevance	(Dubov,	2023).	

1.3.2 IBM	release	cycle	

IBM	 constantly	 releases	 updates	 to	 improve	 security	 fix	 bugs	 in	 the	 system,	 or	 to	 introduce	
additional	 features.	 Below	 a	 Gantt	 diagram	 is	 shown	 in	 Figure	 4	 for	 the	 release	 cycle	 of	 IBM	
COBOL	compilers.	Appendix	1	has	the	same	diagram	with	better	quality.	The	figure	indicates	that	
most	of	the	compilers	are	outdated	and	are	not	supported	anymore	by	IBM	for	security/bugs	etc.	
Currently	 only	 versions	 above	 6.3	 and	 are	 supported	 by	 IBM	 and	 support	 end	 date	 is	 not	
published	yet.	Those	versions	get	support	from	IBM	and	are	being	updated	frequently	to	solve	
bugs	and	improve	security.	

Introduction	to	newer	versions	of	the	COBOL	compiler	underscores	the	language's	continuous	
development	 and	 adaptability	 to	 evolving	 programming	 requirements,	 featuring	 additional	
functionalities	 introduced	over	 the	decades.	This	 indicates	 that	COBOL	has	been	continuously	
developed	 to	 include	 advanced	 features	 over	 the	 decades.	 For	 a	 thorough	 exploration	 of	 the	
complete	 list	 of	 options	 within	 IBM	 COBOL	 compilers,	 including	 those	 introduced	 with	 each	
compiler	version,	it	is	advised	to	visit	IBM's	official	website.	Their	comprehensive	documentation	
details	 the	 full	 list	 of	 options,	 providing	descriptions	 and	 availability	 across	 various	 compiler	
versions	(IBM	Documentation,	2022).	

Figure	4.		COBOL	compiler	release	cycle,	IBM	

	
	

13	
	

2. Research	questions	and	methodology		
As	 highlighted	 in	 the	 introduction,	 previous	 research	 has	 admirably	 outlined	 the	 historical	
context	 and	 foundational	 aspects	 of	 COBOL.	 However,	 there	 remains	 a	 notable	 gap	 in	
comprehensively	addressing	its	current	relevance	in	modern	computing	landscapes	to	contribute	
to	the	existing	research	gap,	this	thesis	aims	to	delve	into	the	ongoing	significance	of	COBOL	and	
its	 integration	 within	 contemporary	 technology	 and	 available	 educational	 resources.	 The	
following	research	questions	were	formulated	to	guide	as	a	framework	for	this	thesis.	

2.1 Research	Questions	
RQ:	To	what	extent	does	COBOL	programming	maintain	its	contemporary	role	and	relevance	in	
modern	information	systems,	considering	its	current	applications,	migration	challenges,	and	the	
availability	of	educational	resources	for	learners?	
SRQ1:	What	are	the	current	uses	and	applications	of	COBOL?	
SRQ2:	 What	 challenges	 do	 organizations	 face	 when	 migrating	 from	 COBOL	 to	 newer	
programming	languages,	and	what	strategies	can	be	employed	to	mitigate	those	challenges?	
SRQ3:	What	open-source	tools	and	sample	programs	support	COBOL	learners	and	contribute	to	
its	current	and	future	relevance?	

2.2 Methodology	
In	chapter	one,	the	research	is	initiated	by	delving	into	the	historical	evolution	of	COBOL	through	
an	 examination	 of	 relevant	 literature.	 Key	 themes	 and	 trends	were	 identified	 from	 academic	
papers,	 and	 the	 contemporary	 significance	of	COBOL	was	assessed	by	 checking	 its	popularity	
through	different	popularity	indexes.	The	setting	of	this	historical	background	was	crucial	as	it	
laid	the	foundation	for	the	subsequent	discovery	of	COBOL's	current	uses	and	implications.	

The	focus	then	shifts	to	an	analysis	of	popularity	and	the	contemporary	job	market	for	COBOL	
programmers	 in	 section	 3.1	 covering	 SQ1.	 Information	 from	 different	 programming	 index	
websites	help	to	understand	COBOL’s	standing	among	other	programming	languages.	Validation	
of	 these	 findings	 is	 then	 conducted	 using	 GitHub	which	 involves	 searching	 for	 the	 total	 files	
associated	with	each	programming	language	listed	in	the	PYPL	Programming	Index.	In	GitHub,	a	
search	and	filter	operation	was	conducted	for	a	specific	programming	language,	excluding	files	
that	contained	different	language.	This	process	resulted	in	the	total	count	of	files	limited	to	the	
specified	programming	language.	Furthermore,	the	fact	that	COBOL	is	used	in	different	domain	
does	not	necessarily	imply	an	ongoing	need	for	COBOL	experts;	there	might	already	be	enough	
COBOL	 experts	 in	 the	 market.	 Therefore,	 job	 vacancies	 were	 examined.	 The	 obtained	 data	
provides	insights	into	the	current	use	and	demand	for	COBOL	expertise	in	the	job	market	and	
shows	 the	 real	 time	 relevance	of	 COBOL.	This	 information	was	obtained	by	 searching	 for	 job	
postings	on	LinkedIn	and	Indeed.com.	The	total	number	of	job	postings	for	various	programming	

	
	

14	
	

languages,	including	Cobol,	was	searched	by	conducting	a	search	for	job	listings	associated	with	
each	programming	language	on	LinkedIn	e.g	“COBOL”,	“Python”.	Additionally,	an	assessment	of	
the	ongoing	relevance	of	Cobol	in	different	countries	was	carried	out	by	searching	for	job	listings	
using	the	keyword	"COBOL"	and	specifying	the	location	for	each	specific	country	on	LinkedIn.			

A	job	list	is	also	created	in	Appendix	8,	showcasing	which	companies	in	the	Netherlands	continue	
to	use	COBOL	and	their	corresponding	salary	information.	This	was	obtained	by	searching	for	
“COBOL”	or	“Mainframe”	on	Indeed.com	and	reading	the	requirement	of	the	job.	Indeed.com	was	
chosen	 for	 this	 case	 because	 it	 featured	 jobs	 that	 genuinely	 required	 COBOL	 or	 mainframe	
expertise.	A	search	on	LinkedIn	for	COBOL	or	mainframe	revealed	numerous	job	listings,	but	a	
significant	portion	of	them	lacked	true	relevance	to	COBOL	or	Mainframe.	

Following	the	popularity	and	the	job	market	demand	for	COBOL,	this	research	takes	a	hands-on	
with	a	case	study	of	a	renowned	bank	in	the	Netherlands	in	section	3.2	to	examine	current	use	
and	application	more	closely.	The	challenges	this	bank	faces	with	COBOL	will	also	be	discussed,	
addressing	SRQ2.	This	illustrates	how	COBOL	is	utilized	within	the	banking	sector	In	this	stage	of	
the	 research,	 interviews	 with	 experts	 were	 conducted	 and	 several	 questions	 were	 asked	
regarding	the	use	of	COBOL	in	a	bank.	The	questions	and	answers	can	be	found	in	Appendix	3.	
Their	 experiences	 over	 10	 years	 and	 insights	 provide	 a	 unique	 understanding	 of	 COBOL's	
applications	 in	 a	 real-world	 context.	 The	 information	 gathered	 from	 the	 interviews	 will	 be	
thoroughly	 reviewed,	 and	 a	 suggestion	 from	 the	 findings	 will	 be	 made	 in	 section	 3.2.1.	 The	
selection	of	interview	participants	was	purposeful.	The	interviewees	were	all	COBOL	developers	
at	the	bank,	who	have	been	actively	involved	in	the	maintenance	and	evolution	of	COBOL	systems.	
The	 qualitative	 data	 collected	 through	 interviews	was	 analysed	 using	 thematic	 analysis.	 This	
approach	made	it	possible	to	identify	recurring	themes,	challenges,	and	strategies	that	the	bank	
uses	in	managing	COBOL	systems.	The	thematic	analysis	aimed	to	provide	a	rich	and	in-depth	
exploration	of	the	bank's	journey	with	COBOL.	

Section	3.3	also	covers	SRQ2	and	discusses	 the	complexities	associated	with	managing	 legacy	
COBOL	code,	the	ongoing	efforts	to	modernize	COBOL	applications	and	the	role	between	COBOL	
and	other	programming	 languages	 in	Modern	Business	Applications.	 It	 explores	 the	 interplay	
between	COBOL	and	other	programming	languages	within	modern	business	applications,	notably	
Java.	 The	 chapter	 features	 a	 literature	 review,	 including	 analysis	 of	 some	 recently	 available	
articles	to	reveal	the	intricate	relationship	between	COBOL	and	various	programming	languages	
in	this	context.	The	analysis	is	conducted	using	google	scholar	for	“migration	from	COBOL	to	x”,	
where	 x	 is	 representing	 a	 programming	 language.	 selected	 articles	 were	 screened	 based	 on	
publication	dates	post-2018.	After	the	selection	process,	a	thorough	reading,	and	analysis	were	
conducted	 to	 identify	 the	 relevance	 to	 this	 thesis.	Additionally,	 a	program	will	be	executed	 in	
different	programming	language	to	determine	if	the	length	of	the	legacy	Cobol	code	is	a	factor	for	

	
	

15	
	

migrating	to	different	programming	language.	A	GitHub	repository	was	used	to	identify	this.	The	
repository	that	was	used	for	this	investigation	was:	https://github.com/q60/rot13/tree/main.	

When	addressing	SRQ3,	the	research	moves	to	a	more	technical	aspect;	a	comparison	of	different	
COBOL	 compilers	 is	 conducted.	 In	 this	 phase,	 a	 variety	 of	 COBOL	 programs	 covering	 the	
fundamental	aspects	of	programming	are	collected	and	compiled	using	Gnu	compilers	and	z/OS	
COBOL	 6.3.	 The	 Gnu	 compiler	 serves	 as	 an	 alternative	 to	 mainframes	 due	 to	 the	 high	 cost	
associated	 with	 purchasing	 mainframe	 computers	 for	 public	 use.	 By	 executing	 the	 samples	
programs	a	conclusion	can	be	drawn	if	Gnu	compiler	is	a	good	compiler	to	run	COBOL	programs.		
Furthermore,	 tutorials	 from	 YouTube	 and	 Udemy	 are	 analysed	 on	 the	 completeness	 of	 basic	
fundamentals	of	programming	languages	concepts,	and	sample	COBOL	codes	are	gathered	using	
a	search	across	multiple	platforms	including	Google	and	GitHub.	YouTube	tutorials	are	accessed	
over	the	last	5	years,	using	the	search	term	"Cobol	tutorial,"	while	keyword	"Cobol	samples"	is	
used	 	 to	 searched	 for	 COBOL	 samples	 on	 Google	 and	 GitHub.	 For	 Udemy,	 a	 search	 will	 be	
conducted	using	the	keyword	"COBOL"	filtering	the	results	on	most	relevance	and	selecting	the	
top	5	as	educational		resources.	By	looking	at	this,	it	can	be	researched	whether	there	are	enough	
resources	available	for	individuals	interested	in	starting	their	programming	journey	in	COBOL.	

In	conclusion,	throughout	the	research	a	combination	of	approaches	is	used	in	order	to	come	to	
the	right	conclusion.		

	

	

	

	

	

	

	

	

	

	
	

16	
	

3. Results	and	analysis	

3.1 Current	use	and	application	of	COBOL	
COBOL	remains	relevant,	particularly	in	legacy	systems,	and	remains	essential	in	the	financial	and	
government	 sectors.	 It	 is	 key	 to	 functions	 like	 core	 banking	 and	 transactions,	 with	 job	
opportunities	 in	COBOL	still	present.	This	enduring	 importance	 is	evident	among	government	
agencies	and	financial	institutions,	which	rely	on	COBOL	for	system	stability	and	security.	

3.1.1	 Popularity	of	Programming	Languages		
As	per	2023,	according	to	the	PYPL	index,	COBOL	holds	the	28th	position	among	programming	
languages	globally	as	shown	in	Figure	2.	During	the	research,	a	trend	was	observed	by	looking	at	
job	listings	such	as	LinkedIn	and	Indeed:	a	substantial	number	of	companies	within	the	financial	
sector	expressed	interest	in	professionals	with	COBOL	Expertise.	Prominent	organizations	such	
as	 ABN-AMRO,	 Belastingdienst,	 Capgemini,	 and	 Sociale	 Verzekeringsbank	 were	 among	 these	
companies.	Appendix	8	provides	a	list	with	companies	that	are	searching	for	COBOL	developers	
as	per	October	2023	from	Indeed.com.		The	monthly	salary	for	the	functions	is	also	displayed	in	
this	list.		

COBOL’s	enduring	popularity	is	a	testament	to	its	stability,	readability,	and	the	fact	that	billions	
of	 lines	 of	 COBOL	 code	 still	 power	 crucial	 infrastructure	worldwide.	 In	 an	 era	 dominated	 by	
languages	such	as	Python,	Java,	and	JavaScript,	COBOL's	presence	in	the	top	30	affirms	its	place	
in	the	realm	of	programming	history	and	its	continued	importance	in	today's	digital	landscape.	
Figure	 2	 indicates	 that	 in	 the	 last	 year	 the	COBOL	 popularity	was	 in	 the	 top	30,	which	 again	
indicates	the	importance	and	the	relevance	of	this	language	(PYPL	Popularity	of	Programming	
Language	 Index,	 2023).	 TIOBE,	 another	 website	 that	 tracks	 the	 popularity	 of	 programming	
languages	indexed	COBOL	on	the	21st	place,	whereas	in	Stack	Overflow's	Developer	Survey,	 it	
ranked	39th	(Stack	Overflow	Developer	Survey	2022,	2022;	TIOBE	Index	-	TIOBE,	2022).	TIOBE's	
survey	tracks	popularity	by	analyzing	online	search	queries	for	programming	languages.	Stack	
Overflow's	Developer	Survey	collects	data	from	thousands	of	developers	worldwide	through	an	
annual	 survey,	 providing	 insights	 into	 language	 preferences	 and	 usage	 in	 the	 developer	
community.		

To	gain	a	clearer	perspective	of	COBOL's	popularity,	a	search	was	conducted	to	determine	the	
number	of	files	currently	available	on	GitHub	for	each	programming	language	from	the	PYPL	list.	
These	searches	revealed	that,	among	the	languages	in	the	list,	COBOL	had	the	smallest	number	of	
available	files,	as	shown	in	Figure	5.	Nevertheless,	 it	 is	noteworthy	that	approximately	27,100	
COBOL	files	are	still	accessible	o	GitHub.		

	
	

17	
	

Although	 COBOL	may	 appear	 to	 rank	 lower	 in	 comparison	 to	 languages	 like	 Java	 in	 various	
surveys,	its	consistent	presence	in	these	rankings	underscores	its	enduring	relevance.	
	

	
Figure	5.	GitHub	files	per	programming	language,	2023	

3.1.2	 Current	COBOL	job	market	
One	 interesting	 way	 to	 understand	
COBOL's	 importance	 in	 today's	 tech	
scene	 is	 to	 look	 at	 job	 postings.	
According	to	LinkedIn	data	from	June	
2023	 in	 the	 Netherlands,	 2,019	 job	
listings	were	asking	 for	COBOL	skills,	
whereas	 there	 were	 only	 384	 job	
listings	for	Fortran,	which	originated	
from	the	same	era.	This	information	
was	 obtained	 by	 searching	 for	 job	
postings	 on	 LinkedIn,	 using	 the	 names	 of	 the	 programming	 languages.	 Comparatively,	 other	
programming	languages	showed	higher	numbers	of	job	listings	as	shown	in	Figure	6.		

While	the	number	of	COBOL	job	listings	is	lower	compared	to	other	languages,	the	fact	that	there	
were	still	over	2,000	job	listings	seeking	COBOL	skills	indicates	a	considerable	demand	for	COBOL	
professionals	in	the	job	market.	However,	it	is	worth	noting	that	this	number	may	not	be	precise	
because	it	contains	all	job	listings	containing	the	keyword	"COBOL"	in	their	vacancies.	When	the	
search	was	narrowed	specifically	to	'COBOL	developer,'	78	results	were	found	on	LinkedIn,	46	on	
Indeed.nl,	and	37	on	randstand.nl,	while	a	search	for	'mainframe	developer'	on	LinkedIn	yielded	
429	results.	This	suggests	that	there	are	still	numerous	open	positions	for	COBOL-related	roles.	
Furthermore,	as	more	 individuals	retire,	 the	demand	for	new	COBOL	professionals	 is	 likely	to	
increase	accordingly.	

12
10
00
00
0

94
40
00
00

84
10
00
00

59
00
00
00

42
20
00
00

38
30
00
00

37
20
00
00

34
60
00
00

18
40
00
00

16
90
00
00

15
20
00
00

89
00
00
0

74
00
00
0

70
00
00
0

61
00
00
0

57
00
00
0

55
00
00
0

49
00
00
0

29
00
00
0

24
00
00
0

13
00
00
0

11
00
00
0

78
60
00

64
70
00

63
50
00

55
10
00

22
00
00

14
30
00

43
30
0

27
10
0

J A
VA

JA
VA
SC
R I
PT C+

+

PY
TH
ON C#

TY
PE
SC
R I
PT C

PH
P
RU
BY GO

OB
JE
CT
IV
E -
C

KO
TL
IN

SC
AL
A
RU
ST

SW
IF
T

DA
RT R

LU
A
PE
RL

M
AT
LA
B

HA
SK
EL
L

GR
OO
VY

PO
W
ER
SH
EL
L

JU
L I
A

PA
SC
AL

V I
SU
AL
	 B
AS
I C
AD
A
VB
A
AB
AP

CO
BO
L

GITHUB	FILES

Figure	6.	Programming	Job	Market	Netherlands,	2023-06-25	
	

	
	

18	
	

COBOL,	despite	originating	in	the	1950s,	results	from	the	job	demand,	several	conclusions	can	be	
drawn.	In	the	financial	sector,	institutions	like	ABN-AMRO	Bank	N.V.	and	the	tax	authority	still	
use	COBOL	according	to	the	job	postings	on	LinkedIn	and	Indeed.	The	complicated	network	of	
banking	operations,	where	both	speed	and	reliability	are	important,	COBOL	in	combination	with	
mainframe	infrastructure	is	a	reliable	solution	to	use	for	complex	banking	operation.	On	the	other	
end	of	 the	spectrum,	a	multinational	steel	company	also	rely	on	COBOL	for	critical	operations	
according	to	a	job	posting	on	Indeed.com.	The	complete	list	of	jobs	and	companies	using	COBOL	
retrieved	from	indeed.com	can	be	found	in	Appendix	8.			

Given	the	real-time	demands	of	retail,	it	comes	as	no	surprise	that	a	tried-and-tested	system,	even	
if	 older,	 continues	 to	 be	 a	 preferred	 choice,	 ensuring	 that	 day-to-day	 operations	 proceed	
seamlessly.	According	to	job	listings	on	LinkedIn	and	Indeed.com,	IT	consulting	giants,	including	
Capgemini,	Ordina,	and	Huxley,	recognize	the	importance	of	versatility.	While	they	stand	at	the	
forefront	of	modern	technological	solutions,	their	expertise	in	COBOL	ensures	they	can	cater	to	a	
range	 of	 clients,	 some	 of	 whom	 operate	 on	 legacy	 systems.	 Public	 institutions	 like	 Sociale	
Verzekeringsbank	and	Belastingdienst,	with	 their	wide	user	base	and	essential	 services,	often	
lean	 on	 long-standing	 infrastructures	 (Back	 to	 basic	met	 COBOL	 -	werken.belastingdienst.nl	 -	
Werken	bij	de	Belastingdienst,	2023).		

Within	these	large	corporations’	significant	amounts	of	data	must	be	processed,	batch	processing	
is	often	necessary	for	this.	This	process	involves	the	use	of	Job	Control	Language	(JCL)	to	delineate	
and	manage	 batch	 jobs,	 including	 the	 execution	 of	 COBOL	 programs.	 Batch	 processing	 is	 the	
automated	execution	of	tasks	without	user	intervention.	Job	Control	Language	(JCL)	is	a	scripting	
language	used	to	define	and	manage	batch	jobs	in	mainframe	systems	like	IBM	z/OS.	JCL	ensures	
successful	execution	by	managing	 job	dependencies	and	resource	allocation.	 It	 is	essential	 for	
efficient	 and	 reliable	 batch	 processing.	 In	 large	 corporations,	 batch	 processing	 holds	 a	 vital	
position	 in	 efficiently	managing	 and	 processing	 enormous	 amounts	 of	 data.	 Batch	 processing	
enables	the	automation	and	streamlining	of	several	business	processes,	such	as	data	processing,	
reporting,	 and	 system	 maintenance,	 on	 a	 scheduled	 or	 recurring	 basis.	 It	 ensures	 timely	
completion	of	tasks,	optimizes	system	performance,	maintains	data	integrity,	supports	complex	
workflows,	 enables	 scalability,	 improves	 efficiency,	 and	 reduces	 costs.	This	 is	where	COBOL's	
history	 for	 unwavering	 reliability	 becomes	 indispensable.	 The	 continued	 reliance	 on	 COBOL	
across	varied	sectors	underlines	its	unmatched	robustness	and	the	nuanced	balance	companies	
strike	between	historical	reliability	and	modern	innovation.	

	
	

19	
	

LinkedIn's	job	vacancy	data	also	provides	the	global	
demand	for	COBOL	expertise,	revealing	the	extent	
of	its	entrenchment	in	different	regions	around	the	
world.	 During	 a	 search	 for	 COBOL	 demand	 on	
LinkedIn	using	COBOL	as	a	keyword	to	find	jobs	in	
a	 specific	 region	 the	 following	 data	was	 obtained	
shown	in	figure	7.	However,	this	data	may	not	be	
accurate	 and	 needs	 more	 refinement	 as	 it	 was	
only	based	on	the	keyword	“COBOL”.		

In	 summary,	 despite	 being	 an	 older	 programming	 language,	 COBOL	 maintains	 its	 global	
relevance,	especially	in	the	field	of	legacy	systems.	It	is	widely	used	in	various	sectors,	including	
finance	and	government,	where	it	plays	a	vital	role	in	critical	functions	such	as	core	banking	and	
transactions.	COBOL's	strength	lies	in	its	ability	to	process	massive	datasets	while	ensuring	data	
integrity.	 Career	 opportunities	 that	 require	 expertise	 in	 mainframe	 and	 COBOL	 remain,	
underscoring	its	ongoing	importance.	In	the	Netherlands	institutions	such	as	Social	Verzekering,	
the	tax	authority,	and	the	banking	sector	rely	on	COBOL	to	process	extensive	data,	particularly	in	
high-transaction	 environments.	 Research	 consistently	 shows	 COBOL's	 presence	 in	 relevant	
indexes,	 reaffirming	 its	 enduring	 relevance	 in	 the	 ever-evolving	 technology	 landscape.	 The	
GitHub	search	showed	that	COBOL	is	still	in	active	use.	

3.2 Case	Study	findings:	COBOL	Usage	in	a	Leading	Dutch	Bank	
In	today's	digital	era,	it	is	easy	to	assume	that	modern	banks	would	have	uniformly	adopted	the	
latest	technological	tools	and	languages.	However,	the	truth	is	more	complicated.	Despite	the	rise	
of	innovative	technologies,	many	global	financial	institutions	continue	to	rely	on	legacy	systems,	
with	 COBOL	 being	 a	 prime	 example.	 One	 leading	 Dutch	 bank's	 enduring	 reliance	 on	 COBOL	
demonstrates	this	relationship	between	the	old	and	the	new.	Serving	as	the	backbone	of	their	IT	
operations,	 COBOL	 oversees	 core	 processes	 like	 payments,	 transactions,	 and	 Financial	 Basic	
Systems	 (FBS).	 These	 processes	 necessitate	 handling	 vast	 data	 volumes	 efficiently,	 an	 arena	
where	COBOL	excels.	

The	 primary	 goal	 of	 this	 case	 study	 is	 to	 evaluate	 a	 leading	 Dutch	 bank's	 long-standing	
relationship	with	COBOL,	a	legacy	programming	language,	in	the	context	of	rapid	technological	
changes.	 The	 main	 question	 guiding	 this	 case	 study	 is:	 "	 What	 are	 the	 current	 uses	 and	
applications	of	COBOL	programming?”.		

COBOL's	ability	to	adapt	was	tested	during	the	Y2K	bug	crisis	in	the	bank,	a	situation	that	could	
have	disrupted	key	banking	operations.	As	seen	in	the	previous	sections,	the	bank	resolved	this	
issue	by	adjusting	all	the	COBOL	systems	to	handle	a	four-digit	year	code	manually.	Furthermore,	

Figure	7.	Open	vacancies	in	specific	region	for	COBOL,	2023	

	
	

20	
	

the	bank	continued	to	upgrade	to	newer	versions	of	COBOL,	currently	using	version	6.3,	which	
offers	 improved	 data	 processing	 and	 resource	 management.	 6.4	 is	 the	 most	 recent	 version	
supported	by	IBM	however	due	to	the	reliability	and	security	reason	of	6.4	they	are	currently	
using	6.3	(Appendix	4).		

Even	though	COBOL,	as	a	legacy	system,	presents	maintenance	challenges,	the	bank	believes	its	
benefits	-	cost-effectiveness,	security,	and	control	-	surpass	these	hurdles.	Banks	have	reinforced	
these	benefits	with	secure	coding	practices	such	as	data	encryption,	multi-factor	authentication,	
and	proper	 input	 validation.	Despite	 technological	 advances	 such	 as	AI	 and	 cloud	 computing,	
COBOL	 remains	 indispensable	 due	 to	 its	 unique	 capability	 to	 efficiently	 process	 significant	
amounts	of	data.	Several	factors	influence	COBOL	within	the	bank.	These	include	the	challenge	of	
replacing	COBOL	with	modern	 languages,	 the	shortage	of	COBOL-experienced	developers,	and	
the	pressure	of	adapting	to	evolving	infrastructures.		

However,	the	bank	plans	to	keep	COBOL	because	of	its	reliability,	the	excessive	costs	and	risks	
associated	with	transitioning	to	another	 language,	and	COBOL's	proficiency	 in	processing	vast	
data	volumes.	To	address	the	problem	of	the	shortage	of	experienced	COBOL	developers,	de	bank	
is	currently	hiring	and	giving	training	in	India	to	keep	the	mainframe	environment	running.	The	
bank	 has	 also	 developed	 an	 application	 that	 translates	 query-type	 language	 into	 COBOL,	
addressing	 the	 challenge	 of	 a	 declining	 availability	 of	 COBOL	 experts.	 With	 this	 application,	
individuals	without	 programming	knowledge	 can	 efficiently	work	 and	 generate	COBOL	 codes	
based	on	their	specific	requirements.	

In	the	FBS	department,	the	mainframe	team	consists	of	around	20	specialists	deeply	engaged	with	
the	mainframe	system.	Broadening	 the	perspective,	150-200	 individuals	are	actively	 involved	
with	mainframe	operations	at	the	bank.	They	maintain	over	27,000	active	COBOL	programs,	a	
number	 that	 historically	 peaked	 at	 57,000.	 As	 the	 bank	 gradually	 phases	 out	 these	 older	
programs,	there	is	a	marked	shift	towards	modern	languages	like	Java.	This	transition	is	further	
evidenced	 by	 the	 bank's	 integration	 tools	 such	 as	 OneSumX,	 Beam,	 and	 Topaz.	 Leveraging	
platforms	 like	 Informatica	ETL,	Hadoop,	Databricks,	 and	 the	data	analytics	 capabilities	of	SAS	
Enterprise	Guide,	the	bank	has	set	its	sights	on	a	future	migration	to	Azure.	

SAS	Enterprise	Guide	is	a	popular	tool	known	for	its	point-and-click	interface	that	enables	users	
to	access,	manage,	and	analyse	data	from	various	sources.	Within	the	bank,	SAS	Enterprise	Guide	
provides	the	ability	to	query	DB2	tables	directly,	making	data	analysis	and	reporting	tasks	more	
streamlined	 and	 efficient.	 DB2	 is	 a	 database	management	 system	 that	 is	mostly	 used	 to	 run	
mission-critical	workloads	in	mainframe.		

	
	

21	
	

While	 COBOL	 continues	 to	 serve	 as	 a	 foundational	 pillar,	modern	 development	 practices	 are	
seamlessly	integrated.	Jenkins,	a	widely	used	automation	server,	streamlines	tasks	like	building,	
testing,	and	deploying	applications,	ensuring	smoother	and	more	efficient	workflows.	SonarQube,	
on	the	other	hand,	is	a	tool	dedicated	to	continuously	inspecting	the	quality	of	source	code	and	
detecting	bugs,	vulnerabilities,	and	code	smells.	This	ensures	that	the	code	adheres	to	set	quality	
standards	and	best	practices.	The	bank	also	uses	Topaz,	a	suite	of	developer	tools	that	aids	in	
mainframe	 application	 development	 by	 providing	 a	 clearer	 view	 into	 data	 structures	 and	
relationships,	making	it	easier	to	understand,	debug,	and	maintain	the	code.	When	a	component	
needs	 to	 be	 promoted	 it	 should	 happen	 from	 topaz.	 Once	 someone	 tries	 to	 promote	 their	
component	 from	a	 test	environment	 to	a	higher	environment	a	continues	 integration	pipeline	
gets	triggered	and	SonarQube	will	start	testing	the	code	on	several	aspects	as	it	can	be	seen	in	
Appendix	5.		

The	bank's	technological	evolution	extends	beyond	merely	relying	on	IBM's	COBOL	compiler.;	it	
is	about	evolving	and	expanding	integration	capabilities	with	systems	like	DB2.	Specialized	tools,	
such	as	Cobra	which	were	particularly	developed	for	this	bank	for	database	management,	and	the	
Topaz,	are	tailored	to	address	specific	operational	demands.	

But	challenges	persist.	The	retirement	wave	of	mainframe	professionals	and	the	influx	of	a	newer,	
younger	 generation	 brings	 forth	 the	 potential	 for	 knowledge	 gaps.	 It	 is	 a	 challenging	 task	 to	
transfer	30-35	years	of	experience	into	just	2	or	3	years	of	training.	In	the	past,	due	to	frequent	
management	 changes,	 some	 IBM	colleagues	were	 reluctant	 to	 share	 their	 expertise,	 fearing	 it	
might	cost	their	job	security	as	new	management	could	replace	them	easily.	However,	these	walls	
are	gradually	breaking	down.		

A	 new	 generation	 of	 professionals	 brings	 a	 fresh	 collaborative	 spirit,	 enhancing	 knowledge	
sharing	in	recent	years.	At	this	moment	there	is	a	balance	between	new	and	more	experienced	
people.	 In	 a	 stable	 situation,	 there	may	 not	 be	 an	 inherent	 knowledge	 gap;	 however,	 during	
periods	of	uncertainty,	departments	could	face	challenges	as	colleagues	may	be	reluctant	to	share	
their	knowledge	to	secure	their	positions.	

In	 terms	of	 security,	 the	 bank's	mainframe,	while	 not	 impervious,	 serves	 as	 a	 robust	 defence	
mechanism.	This	security	includes	various	aspects,	including	confidentiality,	integrity,	and	non-
repudiation.	Comprehensive	 logging	 ensures	 that	 every	 action	within	 the	 system	 is	 traceable,	
enhancing	both	integrity	and	non-repudiation.	Stringent	access	controls	further	bolster	security,	
safeguarding	 against	 both	 accidental	 and	malicious	 threat	 vectors.	While	 vulnerabilities	may	
exist,	 it	 is	 worth	 noting	 that	 the	 mainframe,	 powered	 by	 COBOL,	 has	 a	 strong	 security	
infrastructure	that	often	surpasses	that	of	many	contemporary	systems,	providing	a	multi-faceted	
defence	against	potential	threats.	

	
	

22	
	

In	conclusion,	the	bank	maintains	a	balance	between	depending	on	an	enduring	technology	like	
COBOL	 and	 adapting	 to	 the	 fast-paced	 digital	 world.	 COBOL	 plays	 a	 vital	 role	 in	 the	 bank's	
business	 objectives,	 particularly	 in	 fast	 transaction	 processing	 -	 a	 key	 factor	 in	 customer	
satisfaction.	This	case	study	not	only	offers	insights	into	the	current	state	of	FBS	domain	but	also	
provides	 valuable	 lessons	 applicable	 beyond	 this	 context.	 It	 highlights	 COBOL's	 enduring	
importance	 in	 banking,	 strategies	 for	 addressing	 maintenance	 challenges,	 and	 the	 balance	
between	 legacy	 systems	 and	 modernization.	 While	 these	 insights	 may	 resonate	 with	 other	
domains	within	the	bank	and	financial	institutions	like	Rabobank	or	SVB,	their	applicability	will	
depend	on	each	organization's	unique	circumstances.	The	recorded	responses	to	the	interview	
questions	used	for	this	case	study	can	be	found	in	Appendix	3.	

3.2.1 Suggestions	from	case	study	
This	case	study	shows	how	COBOL,	an	older	programming	language,	is	still	vital	to	a	major	Dutch	
bank's	operations.	Despite	its	age,	COBOL's	reliability	and	ability	to	handle	large	data	sets	make	
it	 irreplaceable	 in	 certain	 areas.	 However,	 reliance	 on	 COBOL	 also	 brings	 challenges	 such	 as	
finding	skilled	programmers	and	integrating	modern	technologies.	

For	these	reasons,	here	are	some	suggestions:	
- Skill	Training:	The	bank	should	invest	in	training	new	IT	staff	in	COBOL	to	ensure	an	expert	

team	is	always	available	for	system	maintenance	and	updates.	
- Explore	Modern	Technologies:	While	COBOL	is	essential	for	some	tasks,	the	bank	can	consider	

using	 modern	 programming	 languages	 and	 cloud	 computing	 for	 tasks	 that	 are	 less	 data	
intensive.	

- Support	COBOL	Advancements:	The	bank	could	help	develop	new	COBOL	tools	or	contribute	
to	open-source	projects	to	ensure	the	language	continues	to	evolve	and	remain	relevant.	

- Plan	for	the	Future:	The	bank	should	have	a	contingency	plan	to	deal	with	potential	issues,	
like	a	lack	of	COBOL-skilled	programmers	or	the	language	becoming	obsolete.	

	

	

	

	

	

	
	

23	
	

3.3	 Modernization	of	COBOL	
The	modernization	of	COBOL	is	a	critical	endeavour	as	organizations	seek	to	update	their	legacy	
systems.	Efforts	involve	integrating	COBOL	with	newer	technologies,	enabling	better	scalability	
and	performance.	Additionally,	advancements	in	COBOL	dialects,	such	as	Micro	Focus	COBOL,	are	
accommodating	modern	programming	paradigms,	making	it	easier	to	adapt	and	integrate	COBOL	
applications	with	contemporary	platforms.	These	modernization	initiatives	ensure	that	COBOL	
remains	an	asset	in	today's	ever-evolving	digital	landscape.	

3.3.1	 Dealing	with	COBOL	Programs:	Language	migration	vs	Platform	
migration	
Many	programming	languages	have	tried	to	replicate	COBOL,	but	none	have	truly	succeeded.	Java,	
however,	 has	 emerged	as	 a	potential	 contender	 (Sneed	et	 al.,	 2013).	A	 simple	Google	 Scholar	
search	reveals	that	migrating	from	COBOL	to	Java	holds	the	highest	appeal	when	compared	to	
other	programming	languages.	An	analysis	conducted	in	August	2023	using	google	scholar	for	
“migration	 from	 COBOL	 to	 x”,	 where	 x	 is	 representing	 a	 programming	 language,	 revealed	
approximately	4,410	papers	related	to	COBOL-to-Java	migration,	1,030	related	to	Python,	1,240	
for	 COBOL-to-C#,	 and	 230	 for	 COBOL-to-Scala	 migration.	 This	 search	 was	 done	 without	
implementing	any	 filter.	 In	a	similar	search,	but	excluding	papers	before	2018,	 the	number	of	
relevant	papers	significantly	decreased,	with	671	for	Java	migration,	337	for	Python,	267	for	C#,	
and	88	for	Scala.	A	visual	representation	of	these	findings	is	presented	in	Figure	8,	which	shows	
the	prevalence	of	different	programming	languages	in	COBOL	migration	papers.	This	search	was	
essential	 to	 understand	 the	 current	 roles	 of	 other	 languages	 in	 COBOL's	 modernization	 or	
migration	efforts.	Subsequently,	few	papers	from	the	first	2	pages	in	google	scholar	were	selected	
for	few	programming	languages,	leading	to	the	following	conclusions	regarding	the	focus	of	the	
most	recent	papers.	The	title	of	the	analyzed	papers	and	their	relevance	to	this	thesis	can	be	found	
in	Appendix	6.		

	

53
10

19
90

14
70

14
40

13
10

12
60

60
3

45
1

25
3

76

81
6

46
2

31
6

35
1

17
8 41
0

17
0

14
1

10
3

66

J A VA JAVASCR I PT C# PHP TYPESCR I PTPYTHON RUBY SW IFT SCALA KOTL IN

COBOL	MIGRATION	PAPERS
All After	2018

Figure	8.	Scientific	Papers	on	COBOL	Migration,	2023	

	
	

24	
	

Migrating	from	COBOL	to	Java:	Papers	in	this	category	explore	practical	aspects	of	migrating	
from	 COBOL	 to	 Java,	 including	 hybrid	 approaches.	 They	 also	 investigate	 microservices	 for	
modernizing	 legacy	 software,	 efficient	 platform	 migration,	 and	 open-source	 methods.	
Additionally,	the	papers	cover	automated	code	transformations,	screen	scraping	for	mainframe	
migration,	 and	 the	 assessment	 of	 antipatterns	 and	 complexity.	 These	 papers	 also	 address	
topology	considerations	for	legacy	system	migration	and	experiences	with	cost-driven	software	
migration,	including	re-implementing	legacy	systems.	
	
Migrating	from	COBOL	to	Python:	Most	of	the	papers	focus	on	unsupervised	code	translation	
and	the	use	of	automated	unit	tests.	They	delve	into	machine	learning-based	program	translation	
and	learning	representations	of	COBOL	code.	The	papers	also	discuss	cloud	migration,	language	
porting,	human-AI	collaborations	 in	code	 translation,	 security	considerations	and	multilingual	
code	snippet	training	relevant	for	modernizing	COBOL.	Python	is	known	for	its	ease	of	scripting	
and	automation.	Various	migration	tasks,	such	as	data	extraction,	 transformation,	and	 loading	
(ETL),	 can	 be	 automated	 with	 Python	 scripts,	 making	 the	 migration	 process	 more	 efficient.	
However,	 none	 of	 the	 papers	 provided	 a	 concrete	 real-world	 scenario	 showcasing	 the	 use	 of	
Python	 for	migrating	 from	COBOL.	With	 the	advent	of	OpenAI	Codex	and	advancements	 in	AI	
technology,	 there	 is	 optimism	 that	 soon	 it	 will	 become	 capable	 of	 seamlessly	 executing	 the	
migration	 process	 from	 COBOL	 to	 Python.	 An	 article	 on	 towardsdatascience.com	 reported	
successful	tests	in	converting	a	few	programs	to	and	from	COBOL,	although	it	acknowledged	the	
current	 limitations	 due	 to	 OpenAI	 Codex	 not	 being	 fully	 trained	 (Ryan,	 2022).	 Despite	 the	
imperfect	functionality	at	present,	there	is	anticipation	that	ongoing	development	efforts	will	lead	
to	breakthroughs,	enabling	Codex	to	translate	between	COBOL	and	Python,	and	potentially	any	
programming	language	in	the	future.	

Migrating	from	COBOL	to	C#:	These	papers	emphasize	CFlat,	an	intermediate	representation	
language,	and	its	role	in	software	migration	to	Java	and	C#.	The	papers	also	assess	antipatterns	
and	complexities	 in	COBOL-to-C#	migration.	They	highlight	 the	 importance	of	qualification	 in	
large-scale	 modernization,	 software	 refactoring	 in	 system	 modernization,	 access	 to	 COBOL	
repositories,	enhancements	in	programming	language	transformation,	developer	perspectives	on	
defects,	cost-driven	software	migration,	and	post-migration	adjustments.	

Migrating	from	COBOL	to	Scala:	The	 focus	 is	on	automatic	code	conversion	to	Scala	and	the	
learning	of	migration	models	for	incremental	language	transitions.	The	papers	discuss	automated	
unit	 tests	 for	 code	 translation,	 insights	 from	 30	 years	 of	 software	 refactoring	 research,	 and	
challenges	 faced	 by	 software	 language	 engineers.	 Additionally,	 the	 selection	 introduces	 a	
comprehensive	benchmark	for	code	translation,	explores	support	for	lambda	expressions	in	Java	
as	 an	 intermediary	 step	 before	 Scala,	 and	 discusses	 building	 applications	 with	 modern	
technologies,	 including	 Spring,	 Java,	 and	 PostgreSQL.	 Upon	 reviewing	 the	 results,	 it	 becomes	

	
	

25	
	

evident	that	most	of	the	literature	suggests	that	Java	can	serve	as	a	replacement	for	COBOL	in	
many	scenarios.	Other	programming	languages	only	help	in	the	modernisation	process	of	COBOL.	
COBOL	 and	 Java,	 with	 their	 different	 origins,	 designs,	 and	 goals,	 represent	 two	 ends	 of	 the	
programming	spectrum.	COBOL	was	primarily	developed	for	business	applications,	while	 Java	
was	 designed	 as	 a	 general-purpose	 language	 for	 various	 programming	 tasks.	 Nevertheless,	
despite	 their	 differences,	 these	 two	 languages	 have	 a	 complex	 relationship	 that	 spans	 over	
decades.	

The	use	cases	of	these	languages	play	a	significant	role	in	the	relationship	between	COBOL	and	
Java.	 Typically,	 COBOL	 supports	 legacy	 systems,	while	 Java	 is	 often	 chosen	 for	modern,	web-
focused	applications.	Therefore,	when	businesses	and	organizations	look	to	update	their	legacy	
systems,	Java	frequently	comes	up	as	a	suitable	replacement	for	COBOL.	However,	this	switch	can	
be	difficult	given	the	necessary	migration	of	massive	amounts	of	data	and	applications	collected	
over	many	years	or	even	decades.	One	example	of	a	successful	COBOL	to	Java	migration	is	the	
case	of	The	New	York	Times	Company.	In	2018,	the	company	migrated	its	business-critical	COBOL	
application	 for	home	delivery	of	newspapers	 to	 Java.	The	project	was	completed	on	 time	and	
within	budget,	and	the	new	application	has	been	in	production	ever	since	(De	Marco	et	al.,	2018).		

The	COBOL	to	Java	migration	at	The	New	York	Times	Company	is	a	success	story	that	shows	that	
it	 is	 possible	 to	 modernize	 legacy	 systems	 without	 disrupting	 critical	 business	 operations.	
However,	it	is	important	to	note	that	not	all	COBOL	to	Java	migrations	is	as	successful.	The	success	
of	a	migration	project	depends	on	several	factors,	including	the	complexity	of	the	legacy	system,	
the	availability	of	resources,	and	the	level	of	technical	expertise	(De	Marco	et	al.,	2018).		

Many	organizations	have	developed	tools	enabling	COBOL	programs	to	compile	and	operate	on	
Java	virtual	machines	 to	 facilitate	 this	 transition.	This	 strategy,	 termed	 "Java	 interoperability"	
empowers	 organizations	 to	 leverage	 the	 benefits	 of	 Java	 without	 necessitating	 a	 complete	
overhaul	 of	 their	 legacy	 systems	 (Java	 and	 COBOL	 Interoperability	 Introduction,	 IBM.).	 This	
method	 has	 gained	 popularity	 among	 organizations	 aiming	 to	 update	 their	 systems	 while	
mitigating	the	risks	and	costs	of	a	comprehensive	migration.	

To	bridge	the	gap	between	these	disparate	worlds,	various	companies	have	developed	tools	and	
frameworks	 to	 enable	 smooth	 collaboration	 between	 COBOL	 and	 Java.	 For	 instance,	 IBM	 has	
launched	a	 tool	named	 "z/Transaction	Processing	Facility"	 enabling	 the	 integration	of	COBOL	
applications	with	Java-based	web	applications.	As	the	number	of	COBOL	developers	are	declining,	
IBM	 also	 expanded	 the	 abilities	 of	 its	 generative	 AI	 based	Watson	 Code	 Assistant	 to	 include	
COBOL	code	translation	into	Java.	The	product	is	targeted	at	modernizing	mainframe	applications	
that	run	on	IBM	Z	systems	(Ghoshal,	2023).		

	
	

26	
	

This	 strategy	 permits	 organizations	 to	 capitalize	 on	 the	 strengths	 of	 both	 languages	 while	
mitigating	the	risks	involved	in	full	migration	(IBM,	2023).	OpenFrame	from	TmaxSoft	is	another	
solution	 for	 transitioning	 old	 mainframe	 applications	 to	 modern	 platforms	 like	 Linux,	 Unix,	
Docker	Containers,	or	the	public	cloud.	Additionally,	TmaxSoft’s	JEUS	application	server	allows	
COBOL	 and	 Java	 applications	 to	 operate	 together	 seamlessly.	 This	 means	 organizations	 can	
upgrade	 their	existing	COBOL	systems	with	 Java	capabilities,	 simplifying	 the	entire	process	of	
modernizing	and	integrating	mainframe	applications	(Mainframe	Modernization	|	OpenFrame	|	
TMAXSoft,	2022	;	Tmaxsoft,	2021).	

The	experience	report	on	"Bottom-up	and	Top-down	COBOL	System	Migration	to	Web	Services"	
highlights	 that	 adopting	 a	 service-oriented	 architecture	 (SOA)	 is	 a	 promising	 approach	when	
migrating	 legacy	 systems	 to	 modern	 programming	 languages	 (Rodríguez	 et	 al.,	 2011).	 By	
converting	COBOL	programs	 to	Web	Services,	organizations	 can	 leverage	 the	benefits	of	 SOA,	
enabling	seamless	communication	and	integration	across	heterogeneous	systems.		

The	 bottom-up	migration	 approach	 involves	 encapsulating	 discrete	 functionalities	within	 the	
COBOL	code	as	independent	Web	Services,	while	the	top-down	migration	approach	focuses	on	
designing	the	Web	Services	architecture	first	and	aligning	the	COBOL	legacy	system	accordingly.	
Both	methods	emphasize	the	utility	of	service-oriented	principles,	facilitating	the	creation	of	a	
coherent	and	extensible	Web	Services	ecosystem.	By	implementing	SOA,	businesses	can	achieve	
smoother	 transitions	 to	 other	 programming	 languages,	 ensuring	 improved	 interoperability,	
scalability,	and	maintainability	in	the	modern	software	landscape	(Rodríguez	et	al.,	2011).		

To	 sum	 up,	while	many	 programming	 languages	 have	 attempted	 to	 replace	 COBOL,	 Java	 has	
emerged	as	a	strong	contender,	supported	by	a	lot	of	research	that	favours	the	switch	from	COBOL	
to	 Java.	COBOL	and	 Java	are	 like	opposites	 in	 the	programming	world:	COBOL	 is	designed	 for	
business,	while	 Java	 is	a	versatile	 language	 for	all	kinds	of	 tasks.	They	both	have	 their	places;	
COBOL	is	great	for	legacy	systems,	while	Java	shines	in	modern	apps.	When	businesses	want	to	
update	their	old	systems,	Java	often	seems	a	desirable	choice	to	replace	COBOL.	But	switching	is	
not	always	easy	because	of	all	the	data	and	apps	that	have	been	collected	over	the	years.		
The	New	York	Times	Company	did	this	successfully	and	showed	that	modernization	was	possible	
without	causing	much	chaos.	Companies	are	using	strategies	like	Java	interoperability	and	tools	
to	make	this	transition	smoother.	They	also	use	SOA	to	migrate	old	systems	to	modern	languages	
like	 Java,	 making	 things	 work	 better	 in	 today's	 software	 world.	 This	 collaboration	 between	
COBOL	and	Java	shows	how	adaptable	programming	languages	are	and	provides	flexible	ways	to	
upgrade	and	succeed	in	today's	digital	age.	

	
	

27	
	

3.3.2	 The	Challenge	of	Maintaining	Legacy	COBOL	Code	and	Transitioning	
Away	from	COBOL	
Migrating	 to	 more	 modern	 languages	 poses	 various	 challenges	 for	 organizations.	 These	
challenges	arise	due	to	COBOL's	inherent	characteristics	and	critical	role	in	legacy	systems.	

One	 of	 the	 most	 significant	 challenges	 during	 the	 migration	 process	 is	 the	 potential	 loss	 of	
complex	business	 logic	 embedded	within	 legacy	COBOL	applications.	 COBOL	 systems,	 refined	
over	 decades,	 embody	 a	 wealth	 of	 domain-specific	 knowledge	 integral	 to	 an	 organization’s	
operations.	Many	of	these	systems	lack	proper	documentation,	making	it	difficult	to	accurately	
capture	 and	 translate	 intricate	 business	 rules	 or	 functionality	 (Bailey,	 2023).	 Translating	 this	
business	logic	into	a	new	language	becomes	a	challenging	and	error-prone	task	(Sneed,	2001).	As	
COBOL	 applications	 have	 gained	 strategic	 significance,	 a	 comprehensive	 research	 study,	
encompassing	respondents	from	49	countries	and	focusing	on	companies	with	a	workforce	of	at	
least	 1000	 employees,	 revealed	 a	 noteworthy	 trend.	 Among	 these	 respondents,	 a	 significant	
majority,	specifically	72%,	expressed	a	preference	for	modernizing	COBOL	applications	as	their	
chosen	path	forward,	rather	than	rip	and	replace	(MicroFocus,	2022).	

In	addition,	 the	shrinking	pool	of	COBOL-trained	developers	 in	 the	current	 IT	market	adds	 to	
system	migration	challenges.	Accurately	interpreting	and	translating	legacy	COBOL	code	into	a	
new	language	requires	a	deep	understanding	of	COBOL,	which	is	becoming	less	common	among	
developers.	 The	 scarcity	 of	 skilled	 COBOL	 developers	 complicates	 the	migration	 process	 and	
increases	the	risk	of	errors	(Sneed,	2013).	In	2020,	the	average	age	of	a	COBOL	developer	was	
approximately	50	years	and	34	weeks,	and	this	age	continues	to	increase	with	each	passing	year	
(MicroFocus,	2020).	This	aging	trend	among	COBOL	developers	underscores	the	growing	need	
for	 strategies	 to	 address	 the	 potential	 shortage	 of	 expertise	 in	maintaining	 and	modernizing	
critical	COBOL-based	systems.	Moreover,	COBOL	is	scarcely	taught	in	academic	settings,	with	only	
37	universities	worldwide	offering	dedicated	mainframe	courses	 (Botella,	 2020).	This	 limited	
exposure	to	COBOL	in	education,	coupled	with	the	aging	workforce,	raises	concerns	about	the	
sustainability	of	the	vast	banking	infrastructure	heavily	reliant	on	COBOL	expertise	in	the	future,	
creating	a	pressing	need	for	initiatives	to	bridge	this	knowledge	gap	(MicroFocus,	2020).	

Migrating	from	an	existing	COBOL	system	to	a	new	one	often	requires	system	downtime.	Even	
with	planned	outages,	 there	are	significant	costs	and	potential	disruptions	to	normal	business	
operations.	Unforeseen	 issues	during	the	migration	process	can	prolong	downtime,	 leading	 to	
higher	costs	and	operational	impacts	(Sneed,	2001).	

Surprisingly,	the	length	of	COBOL	code	is	not	the	issue	or	a	challenge	that	many	might	assume,	
given	 its	 status	 as	 an	 older	 language,	 and	 concerns	 about	 its	 efficiency.	 The	 research,	 which	
compared	 the	 length	 of	 code	 required	 to	 achieve	 the	 same	 functionality	 across	 various	

	
	

28	
	

programming	languages,	found	that	there	was	not	a	substantial	difference.	As	Figure	9	illustrates,	
COBOL's	code	length	falls	within	the	average	range.	A	GitHub	repository	was	used	to	come	at	this	
conclusion.	 The	 repository	 that	 was	 used	 for	 this	 investigation	 was:	
https://github.com/q60/rot13/tree/main.	

	

	

3.3.3	 Transforming	Strategies	and	Modernizing	COBOL	Applications	
To	 address	 the	 challenges	 of	 migrating	 from	 COBOL,	 organizations	 can	 employ	 strategies	 to	
smooth	the	transition	process.	

First,	 an	 incremental	migration	approach	minimizes	 risks	 and	disruptions	 to	operations.	This	
method	involves	gradually	replacing	parts	of	the	COBOL	system,	while	allowing	the	remaining	
sections	 to	 continue	 functioning.	 By	 adopting	 an	 incremental	 approach,	 organizations	 can	
systematically	test	and	validate	the	new	components	without	affecting	the	operation	of	the	legacy	
system.	This	approach	reduces	the	overall	risk	associated	with	migration	(Sneed,	2013).	

Secondly,	automated	code	conversion	tools	can	streamline	the	translation	of	COBOL	code	 into	
other	languages.	Although	these	tools	may	not	capture	all	the	nuances	of	the	original	COBOL	code,	
they	significantly	reduce	the	time	and	effort	required	for	manual	translation.	The	resulting	code	
can	serve	as	a	baseline	for	the	new	system,	which	can	then	be	refined	and	optimized	as	needed	
(Bodhuin	et	al.,	2003).		

In	addition,	investing	in	COBOL	training	for	existing	employees	or	hiring	COBOL	specialists	can	
mitigate	 the	 challenges	 posed	 by	 the	 shrinking	 pool	 of	 COBOL	 expertise.	With	 the	 necessary	
knowledge	 and	 expertise,	 the	 organization	 can	 accurately	 interpret	 and	 translate	 the	 legacy	
COBOL	 codebase,	 ensuring	 a	 smoother	 migration	 process.	 This	 approach	 also	 helps	 in	 the	
knowledge	 transfer	 between	 experienced	 COBOL	 developers	 and	 recruits	 (Erenkrantz	 et	 al.,	
2010).	

10
8

38 35 31 26 25 25 25 25 24 24 24 23 23 22 19 19 19 18 18 17 16 15 13 5 2 2

F L
UT
TE
R

M
ER
CU
RY C

AD
A
DA
RT C+

+ GO
OD
IN

PA
SC
AL

FO
RT
RA
N

NO
DE
. J S R

CO
BO
L
JA
VA
HA
XE C#

DY
AL
OG
	A
PL PH

P

M
AT
LA
B

SC
AL
A

HA
SK
EL
L

JU
L I
A
RU
BY

KO
TL
IN
PE
RL
BA
SH

PY
TH
ON
	 3
. 8

CODE	LENGTH	COMPARISON

Figure	9.	Code	length	comparison	
	
	

	
	

29	
	

To	address	the	challenge	of	data	compatibility,	organizations	can	also	 leverage	data	migration	
tools.	These	tools	automate	the	data	mapping	and	transformation	process,	reducing	the	manual	
effort	required	and	minimizing	the	risk	of	errors.	Data	migration	tools	streamline	the	conversion	
of	 data	 structures	 and	 types	 from	 COBOL	 formats	 to	 those	 used	 by	 modern	 languages	 and	
databases	(Bodhuin	et	al.,	2003).		

Data	 migration	 offers	 a	 concrete	 solution	 to	 the	 challenges	 presented	 by	 legacy	 systems.	 It	
preserves	historical	data	critical	for	compliance	and	continuity,	enhances	data	accuracy	through	
cleansing	and	transformation,	and	aligns	data	with	modern	technology	standards.		

This	process	minimizes	downtime,	supports	scalability,	reduces	costs,	and	enhances	data	security	
and	 compliance.	 Modern	 systems	 resulting	 from	 data	 migration	 are	 easier	 to	 maintain	 and	
update,	 streamlining	 operations	 and	 ensuring	 organizations	 can	 embrace	 innovation	 and	 can	
adapt	 to	 changing	 business	 needs	 while	 safeguarding	 valuable	 data	 and	 ensuring	 business	
continuity.	

Despite	the	challenges	in	migrating	from	COBOL	to	newer	programming	languages,	organizations	
can	 effectively	manage	 the	 transition	 process	 and	 ensure	 a	 successful	migration	with	 careful	
planning,	strategic	use	of	available	tools,	and	the	right	resource	investment.	

3.4	 COBOL	Learning	
This	section	delves	into	the	world	of	COBOL	compilers	and	available	learning	resources,	exploring	
open-source	and	online	resources	that	empower	individuals	to	learn	this	enduring	programming	
language.	These	valuable	tools	provide	a	gateway	for	learners,	offering	a	range	of	materials	and	
courses	that	enhance	COBOL	proficiency,	thus	contributing	to	its	ongoing	relevance	in	the	ever-
evolving	technology	landscape.		

3.4.1	 Exploration	of	COBOL	resources		
Like	 other	 languages,	 there	 are	 frameworks	 and	 libraries	 with	 common	 functions.	 IBM's	
Enterprise	 COBOL	 provides	 a	 suite	 of	 libraries	 that	 enhance	 the	 capabilities	 of	 the	 COBOL	
language.	 These	 libraries	 include	 robust	 data	 manipulation	 and	 file	 handling	 functionalities,	
essential	for	efficiently	processing	substantial	amounts	of	data.	Additionally,	IBM	offers	libraries	
that	facilitate	integration	with	other	systems	commonly	found	in	legacy	ecosystems,	such	as	DB2,	
IMS,	and	CICS	(IBM,	2020).	However,	a	license	from	IBM	is	necessary	to	obtain	this	tool,	and	it	is	
not	 freely	 downloadable	 (IBM	 Enterprise	 COBOL	 for	 Z/OS,	 2023.).	 As	 a	 result,	 its	 limited	
accessibility	makes	it	less	practical	for	learners.	

Contrarily,	GnuCOBOL,	a	free	and	open-source	COBOL	compiler,	provides	various	libraries	that	
enhance	COBOL’s	 capabilities.	These	 libraries	 cover	 string	handling,	mathematics,	 and	system	

	
	

30	
	

interaction.	While	not	as	comprehensive	as	some	commercial	offerings,	GnuCOBOL's	libraries	are	
valuable	 resources	 for	 the	open-source	COBOL	community	 (GnuCOBOL	 -	GNU	Project,	2023.).	
Extensive	research	on	the	use	of	GnuCOBOL	as	an	educational	resource	is	presented	in	the	next	
section.	

3.4.2 Available	Online	Resources	
By	doing	a	simple	search	on	google,	 it	was	determined	that	 it	 is	difficult	 to	easily	 find	sample	
programs	on	the	internet.	The	website	www.ibmmainframes.com	and	www.Github.com	were	one	
of	the	few	websites	to	contain	COBOL	examples.	A	search	using	the	keyword	“COBOL”	resulted	in	
over	 4200	 repositories	 in	 GitHub.	Many	 of	 them	 only	 contained	 the	word	 “COBOL”	 but	 after	
filtering	 for	repositories	with	actual	COBOL	code,	 it	 resulted	 in	around	2700	repositories.	For	
those	specifically	looking	for	COBOL	samples,	using	“COBOL	samples”	as	the	keyword	retrieved	
53	 repositories,	 providing	 sufficient	 resources	 to	 learn	 the	 basic	 fundamentals	 of	 COBOL	
programming.	Few	of	the	good	repositories	for	educational	purposes	can	be	found	in	Appendix	
9.	Going	through	50+	available	sample	repositories	 in	GitHub,	 few	were	selected	based	on	the	
completeness	of	fundamentals	of	COBOL	programming.		

Furthermore,	a	series	of	tests	were	performed	to	test	the	GnuCOBOL	compiler's	suitability	for	
learning	coding.	These	tests	involved	various	COBOL	programs	which	are	present	in	Appendix	2,	
providing	 insights	 into	 the	 compiler's	 compatibility	 with	 different	 coding	 scenarios.	 The	
outcomes	revealed	that	the	GNUCOBOL	compiler	was	successful	in	compiling	and	executing	the	
tested	COBOL	programs,	further	emphasizing	its	appropriateness	as	a	tool	for	learning	COBOL	
programming	 for	 students.	 An	 only	 challenge	 currently	 is	 the	 limited	 availability	 of	 COBOL	
programs	 for	 educational	 purposes.	 One	 significant	 reason	 for	 this	 scarcity	 is	 the	 absence	 of	
COBOL	 courses	 in	 university	 curricula,	 especially	 in	 the	 Netherlands,	 where	 not	 a	 single	
university	currently	offers	a	course	on	COBOL.	

The	following	programs	given	in	table	1	have	been	tested	using	z/OS	compiler	6.3	and	GnuCOBOL	
compiler	 3.1.2.	 The	 selected	 programs	 were	 chosen	 to	 encompass	 a	 wide	 range	 of	 COBOL	
programming	constructs	and	functionalities,	ensuring	that	the	study's	findings	are	representative	
of	the	language's	diverse	applications.	Each	program	was	selected	based	on	its	ability	to	highlight	
specific	 COBOL	 features,	 such	 as	 file	 handling,	 conditional	 statements,	 loops,	 arithmetic	
operations,	and	more.		

In	 terms	 of	 compiler	 evaluation,	 the	 primary	 criterion	 was	 whether	 the	 code	 compiled	
successfully.	 The	 goal	 was	 to	 ensure	 that	 the	 compilers	 used	 in	 this	 study	 could	 handle	 the	
compilation	 of	 a	 variety	 of	 COBOL	 programs,	 encompassing	 both	 simple	 and	 complex	 code	
structures.	While	additional	 tests	 for	execution	results,	memory	usage,	and	performance	were	

	
	

31	
	

Table	1.		Tested	COBOL	programs.	

not	 conducted,	 the	 successful	 compilation	 of	 the	 selected	 programs	 serves	 as	 a	 baseline	
evaluation	of	the	compilers'	ability	to	handle	COBOL	code	effectively.	
	
	

	
The	 codes	 of	 some	 of	 these	 programs	 are	 given	 in	 Appendix	 2.	 All	 these	 tested	 programs	
mentioned	in	table	1	work	with	both	compilers	except	the	Xml	generator	1.	The	given	COBOL	xml	
generator	1	program	is	designed	to	process	data	and	generate	XML	output.	It	has	been	tested	by	
IBM	on	GnuCOBOL	compiler	and	Enterprise	z/OS	compiler.	As	this	program	required	JCL	it	was	
not	supported	by	Gnu	Compiler.	

Category	 Program	 z/OS	
COBOL	6.3	

GnuCOBOL	
3.1.2	

General	 Current	date	 Yes	 Yes	
Accept	and	display	 Yes	 Yes	
Dayfinder	 Yes	 Yes	
Mileage	counter	 Yes	 Yes	

Programming	concept	 If-else	implementation	 Yes	 Yes	
Iteration	 Yes	 Yes	
Perform	program	 Yes	 Yes	
Multiplier	 Yes	 Yes	

Data	structure	and	algorithm	 Fibonacci	sequence	 Yes	 Yes	
Prime	number	checker	 Yes	 Yes	
Random	number	
generator	

Yes	 Yes	

Sort	 Yes	 Yes	
Specific	problem/solution	 Y2k	solution	 Yes	 Yes	

GOTO1	 Yes	 Yes	
GOTO1	Solution	 Yes	 Yes	
GOTO2	 Yes	 Yes	
GOTO2	Solution	 Yes	 Yes	

String/Text-Based	 Xml	generator	1	 Yes	 No	

Xml-Generator	
GnuCOBOL	

Yes	 Yes	

Playful	 99	Bottles	of	Beer	1	 Yes	 Yes	
99	Bottles	of	Beer	2	 Yes	 Yes	

Overall	(GitHub)	
https://github.com/neopragma/COBOL-
samples/tree/main/src/main/COBOL		
	
	

Attract	 Yes	 Yes	
Brakes	 Yes	 Yes	
Cond88	 Yes	 Yes	
CPSEQFR	 Yes	 Yes	
CPSEQVR	 Yes	 Yes	
Date1	 Yes	 Yes	
Date2	 Yes	 Yes	
Hello		 Yes	 Yes	
Hex2text	 Yes	 Yes	
Ifeval	 Yes	 Yes	
Invcalc	 Yes	 Yes	
Moveme	 Yes	 Yes	
Notbool	 Yes	 Yes	
Notbool	 Yes	 Yes	
Reformer	 Yes	 Yes	
stringt	 Yes	 Yes	

https://github.com/JohnDovey/GNUCOBOL-Samples	 Day-from-date	 No	 No	
Colors	 Yes	 Yes	

https://github.com/q60/rot13/tree/main	 Encoding	 Yes	 Yes	

https://github.com/neopragma/cobol-samples/tree/main/src/main/cobol
https://github.com/neopragma/cobol-samples/tree/main/src/main/cobol

	
	

32	
	

GnuCOBOL	did	not	offer	support	for	JCL	execution,	a	crucial	aspect	when	working	with	COBOL	
and	mainframes.	The	Hercules	emulator	 (Hercules,	2015)	seemed	to	be	a	suitable	option.	But	
when	the	software	was	downloaded	an	installation	failure	occurred.	This	failure	occurred	due	to	
the	TN3270	terminal	emulator	being	incompatible	with	the	Mac	OS	Venture	Version	13.5.2,	the	
computer	 used	 during	 research	 (Appendix	 7).	 TN3270	 acts	 as	 the	 interface	 between	 the	
mainframe	 emulated	 by	 Hercules	 and	 the	 user.	 A	 setback	 emerged	 from	 the	 outdated	
documentation,	with	the	most	recent	updates	dating	back	to	2015	(Hercules,	2015).	The	absence	
of	 current	 documentation	 made	 it	 difficult	 to	 resolve	 issues	 and	 understand	 the	 emulator's	
functionality	in	the	context	of	contemporary	operating	systems.	This	lack	of	up-to-date	resources	
significantly	hindered	the	progress	of	the	research,	and	prevented	fully	exploring	the	emulator's	
capabilities,	which	would	have	made	it	possible	to	execute	COBOL	programs	that	rely	on	JCLs.	

By	integrating	COBOL	into	academic	syllabuses,	there	could	be	an	uptick	in	interest,	leading	to	
more	sample	codes	being	shared	online.	This	would	also	result	 in	a	 larger	pool	of	 individuals	
proficient	 in	 COBOL,	 potentially	 addressing	 the	 existing	 shortage	 of	 COBOL	 programmers,	 as	
evidenced	by	the	numerous	unfilled	 job	vacancies	 in	the	field.	Even	though	universities	 in	the	
Netherlands	do	not	provide	any	courses	regarding	Cobol,	on	YouTube	there	can	be	found	several	
good	tutorials.	 	Out	of	these,	few	tutorials	were	selected	for	inclusion	in	Appendix	9,	primarily	
due	 to	 their	 comprehensive	 coverage	 of	 fundamental	 programming	 concepts.	 Among	 these	
resources,	"COBOL	Tutorial:	Learn	COBOL	in	One	Video"	by	Derek	Banas	stands	out.	This	tutorial	
comprehensively	 covers	 essential	 COBOL	 concepts,	 enhancing	 understanding	 with	 practical	
examples	and	sample	programs.		

While	the	other	tutorials	offer	a	strong	theoretical	foundation,	Derek	Banas'	tutorial's	inclusion	
of	 practical	 samples	makes	 it	 exceptionally	 useful	 for	 those	 seeking	 a	 hands-on	 approach	 to	
learning	 COBOL	 programming.	Moreover,	 four	 courses	 related	 to	 COBOL	were	 selected	 from	
Udemy,	filtered	on	their	relevance.	

In	 conclusion,	 the	 compiler	 can	 be	 easily	 downloaded	 by	 following	 official	 Gnu	 Compiler	
documentation.	Currently	GnuCOBOL	compiler	version	3.1.2	is	available,	and	it	is	an	accessible	
and	user-friendly	solution	for	compiling	and	running	simple	COBOL	programs.	Even	though	the	
compiler	might	exhibit	 limitations	 in	dealing	with	complex	programs	and	batch	processing,	 it	
remains	a	precious	resource	for	learning	COBOL	and	practicing	rudimentary	program	execution.	
Integration	with	JCL	expertise	becomes	pivotal	for	companies	with	significant	batch	processing	
demands.	The	exhaustive	testing	carried	out	affirmed	the	GNUCOBOL	compiler's	efficiency	for	
learning	 coding	 and	 its	 ability	 to	 compile	 and	 execute	COBOL	programs	 in	 simpler	 scenarios.	
Batch	 processing	 in	 large	 companies	 is	 indispensable	 for	 effective	 data	 management	 and	
processing,	 offering	benefits	 such	as	data	 integrity,	 system	performance,	 scalability,	 and	 cost-
effectiveness.	GnuCOBOL	primarily	serves	as	a	COBOL	compiler	and	runtime	system	and	is	not	

	
	

33	
	

equipped	 for	 the	direct	 execution	of	 JCL	 (Job	Control	 Language).	To	perform	 JCL	 execution,	 a	
mainframe	emulator	is	indispensable,	and	one	such	emulator	is	Hercules.	According	to	Hercules	
documentation,	it	does	enable	the	execution	of	JCLs.	Therefore,	it	is	essential	to	recognize	that	
GnuCOBOL	alone	cannot	fully	unlock	the	potential	of	COBOL	in	a	mainframe	context,	as	the	use	of	
a	mainframe	emulator	like	Hercules	is	essential	for	comprehensive	COBOL	and	JCL	experience.	
GnuCOBOL	is	an	excellent	choice	for	learning	COBOL	programming	in	combination	with	online	
resources	 like	GitHub	 sample	 codes	 and	YouTube	 tutorials.	 It	 provides	 a	 straightforward	and	
accessible	 environment	 for	 beginners	 to	 grasp	 the	 fundamentals	 of	 the	 COBOL	 language,	
understand	 its	syntax,	and	practice	coding.	GnuCOBOL's	simplicity	and	ease	of	use	make	 it	an	
ideal	tool	for	educational	purposes	and	for	those	who	are	just	starting	to	explore	COBOL.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

34	
	

3 Conclusion	

COBOL	 continues	 to	 hold	 significant	 relevance	 in	 today's	 IT	 environment,	 even	 with	 the	
emergence	and	spread	of	newer	programming	languages.	COBOL's	strong	capability,	including	its	
reliability,	efficiency,	scalability,	and	compatibility,	make	it	a	durable	choice	for	industries	that	
rely	on	dependable	and	efficient	data	processing.	It	is	still	one	of	the		popular	languages	because	
it	is	reliable	and		consistent	as	it	has	been	refined	over	time.	Regular	updates	keep	it	secure	and	
up	to	date	with	new	business	requirements.	A	bank	case	study	showed	that	it	works	well	with	
handling	large	amounts	of	data	efficiently	and	it	is	there	for	a	long	run.	However,	this	bank	is	also	
facing	 challenges	 due	 to	 lack	 of	 COBOL	 experts.	 Despite	 the	 presence	 of	 more	 modern	
programming	languages,	COBOL	remains	among	the	top	30	in	popularity	indexes,	affirming	its	
continued	 relevance.	 The	 job	market	 reflects	 its	 importance,	with	 job	 listings	 seeking	 COBOL	
skills.	 In	 summary,	 COBOL's	 applications	 persist,	 emphasizing	 its	 resilience	 and	 enduring	
relevance	across	various	sectors.	

Despite	the	myth	of	COBOL	being	irrelevant	and	prediction	of	phasing	out	decades	ago,	there	is	
still	a	significant	demand	for	experts	within	companies	still	utilizing	this	programming	language.	
On	one	hand,	companies	address	this	demand	by	providing	internal	training.		On	the	other	hand,	
many	companies	are	migrating	from	COBOL	to	newer	programming	languages	or	modernizing,	
however,	 this	 process	 comes	 with	 several	 challenges.	 One	 major	 obstacle	 	 is	 preserving	 the	
complex	 business	 logic	 within	 COBOL	 applications,	 which	 often	 lack	 proper	 documentation,	
making	it	difficult	to	translate	these	intricate	rules.	The	scarcity	of	developers	trained	in	COBOL	
further	compounds	the	difficulty.	Data	compatibility	is	crucial,	but	it	can	be	addressed	with	data	
migration	 tools.	 To	 cope	 with	 these	 challenges,	 organizations	 can	 use	 strategies	 such	 as	
incremental	 migration,	 gradually	 replacing	 parts	 of	 the	 COBOL	 system	 to	 minimize	 risks.	
Automated	 code	 conversion	 tools	 simplify	 the	 translation	 process,	 and	 investing	 in	 COBOL	
training	or	hiring	specialists	helps	with	expertise	shortages.	These	strategies	help	organizations	
in	 transitioning	 to	 newer	 languages	 while	 safeguarding	 their	 crucial	 functionality	 and	 data	
integrity.	The	likelihood	of	a	decrease	in	COBOL's	relevance	is	growing,	given	that	businesses	are	
in	the	process	of	migration.	

This	 shift	 is	 noticeable	 in	 how	 educational	 institutions	 approach	 COBOL,	with	 a	 clear	 lack	 of	
courses	including	this	programming	language.	There	is	a	decreasing	emphasis	on	creating	new	
educational	programs	solely	for	COBOL,	as	it	is	recognized	that	the	current	demand	for	COBOL	
experts	can	be	met	effectively	through	available	resources.	Notably,	resources	like	GNUCOBOL	
and	 numerous	 online	 tutorials	 are	 now	 comprehensive	 and	 accessible	 platforms	meeting	 the	
educational	 needs	 associated	 with	 COBOL	 expertise.	 As	 the	 educational	 landscape	 adapts	 to	
changing	 programming	 language	 trends,	 these	 online	 resources	 play	 a	 crucial	 role	 in	 helping	
individuals	learn	COBOL	proficiently.	

	
	

35	
	

4 Limitations	and	Further	Research	

5.1	 Limitations	
The	first	limitation	of	this	study	was	the	scarcity	of	data	and	statistics	specific	to	COBOL's	
contemporary	role.	The	dominance	of	newer	programming	languages	has	led	to	a	lack	of	recent,	
comprehensive	research	and	quantitative	data	on	the	language's	utilization	and	relevance.	Most	
of	the	existing	literature	primarily	addresses	the	historical	aspects	of	COBOL	and	the	challenges	
associated	with	its	maintenance	or	migration.	The	absence	of	up-to-date	surveys	or	statistical	
analysis	makes	it	challenging	to	quantitatively	assess	the	extent	of	COBOL's	use	in	modern	
information	systems,	as	well	as	its	role	in	different	sectors.	The	limitation	of	search	filters	and	
the	focus	on	web	pages	rather	than	academic	papers	further	restricts	access	to	scholarly	data,	
leaving	gaps	in	the	understanding	of	COBOL's	current	standing	in	the	ever-evolving	landscape	of	
IT	systems.	

Secondly,	quantifying	the	relevance	of	COBOL	has	proven	to	be	challenging,	primarily	because	it	
is	used	in	legacy	systems	within	industries	such	as	banking,	insurance,	and	government.	These	
sectors	often	refrain	from	disclosing	specific	details	about	their	IT	infrastructure	due	to	security	
concerns.	As	a	result,	there	is	a	scarcity	of	concrete	data	available	regarding	the	current	usage	
and	dependence	on	COBOL	in	these	sectors.	Additionally,	during	an	interview	with	a	leading	bank,	
it	was	stipulated	 that	any	 information	or	 insights	obtained	 from	the	 interviews	could	only	be	
included	in	the	study	anonymously.	

Thirdly,	assessing	the	real-world	demand	for	COBOL	skills	in	the	job	market	posed	a	limitation.	
While	job	postings	are	requiring	COBOL,	this	does	not	capture	the	full	picture.	Many	companies	
may	require	COBOL	skills	but	might	not	list	them	explicitly	in	job	postings,	instead	preferring	to	
offer	on-the-job	training	for	the	necessary	COBOL	skills.	

Lastly,	 numerous	 vacancies	 were	 identified	 on	 LinkedIn	 and	 Indeed.	 However,	 a	 substantial	
portion	of	them	proved	to	be	irrelevant	to	the	research	focus.	Additionally,	the	limited	filtration		
options	on	 the	platform	contributed	 to	 the	 inclusion	of	 irrelevant	data,	 thereby	 impacting	 the	
accuracy	of	the	collected	information.	

	

	

	
	

36	
	

5.2	 Further	research	
This	research	provides	invaluable	insights	into	the	ongoing	relevance	of	COBOL	in	the	modern	IT	
landscape.	 However,	 there	 are	 several	 areas	 where	 further	 research	 could	 provide	 more	
comprehensive	knowledge	and	deepen	understanding	regarding	the	relevance	of	COBOL.	

1. In	the		current	study,	the	Hercules	Emulator	could	not	be	used,	which	made	it	impossible	to	
research	 whether	 this	 emulator	 supports	 JCL	 execution	 and	 is	 a	 better	 alternative	 to	
GnuCOBOL.	Therefore,	it	would	be	advisable	to	consider	using	the	Hercules	emulator	for	the	
machine	instead	of	GnuCOBOL.		

2. To	improve	the	of	future	research,	the	data	regarding	the	COBOL	job	market	should	be	refined	
through	additional	filtration.	

3. COBOL	 in	 Education:	 Researching	 the	 role	 and	 presence	 of	 COBOL	 in	 computer	 science	
education	 could	 provide	 important	 insights	 into	 the	 future	 supply	 of	 COBOL	 developers.	
Understanding	whether	 and	 how	COBOL	 is	 being	 taught	 to	 future	 developers	 can	 inform	
strategies	for	addressing	the	apparent	skills	gap	in	this	area.	

4. COBOL	and	Emerging	Technologies:	Further	research	could	be	undertaken	to	explore	how	
COBOL	can	be	integrated	with	modern	technologies.	Given	the	ongoing	importance	of	COBOL	
in	 many	 systems,	 understanding	 how	 it	 can	 work	 alongside	 or	 within	 cloud	 computing,	
artificial	intelligence,	and	other	emerging	technologies	could	be	valuable.	

The	ongoing	relevance	of	COBOL	presents	a	rich	area	for	further	investigation.	These	research	
directions	could	provide	a	more	holistic	understanding	of	COBOL's	role	and	importance	in	today's	
digital	landscape,	its	challenges,	and	outlook.	

	

	

	

	

	

	

	
	

37	
	

5 References	
- Asay,	M.	(2018,	August	27).	All	The	Rich	Kids	Are	Into	COBOL—But	Why?	ReadWrite.	

https://readwrite.com/cobol-programming-language-hot-or-not/	

- Astadia.	(2023,	August	1).	Migrating	COBOL	to	Java	with	Automated	Conversion.	Astadia.	

https://www.astadia.com/blog/migrating-cobol-to-java-with-automated-conversion	

- Back	to	basic	met	COBOL	-	werken.belastingdienst.nl	-	Werken	bij	de	Belastingdienst.	

(2023).	Werken	bij	de	Belastingdienst.	https://werken.belastingdienst.nl/nieuws-en-

artikelen/back-to-basic-met-COBOL-6	

- Bailey,	C.	(2023,	September	18).	The	Challenges	of	Modifying	COBOL	Applications	|	Blog	|	

FairCom.	FairCom.	https://www.faircom.com/insights/the-challenges-of-modifying-cobol-

applications	

- Bodhuin,	T.,	Guardabascio,	E.,	&	Tortorella,	M.	(2003).	Migration	of	non-decomposable	

software	systems	to	the	web	using	screen	proxies.	

https://doi.org/10.1109/wcre.2003.1287247	

- Botella,	E.	(2020,	April	9).	Why	New	Jersey’s	unemployment	insurance	system	uses	a	60-

Year-Old	programming	language.	Slate	Magazine. https://slate.com/technology/2020/04/new-

jersey-unemployment-cobol-coronavirus.html

- C. Cave, W., E. Wassmer, R., T. Irvine, K., & F. Ledgard, H. (2017). A Disruptive Solution to Parallel

Processing. University of

Toledo. http://www.visisoft.com/PDF_Files/DisruptiveSolutionToHPC.pdf

- Ciborowska,	A.,	Chakarov,	A.,	&	Pandita,	R.	(2021,	September).	Contemporary	COBOL:	

developers'	perspectives	on	defects	and	defect	location.	In	2021	IEEE	International	

Conference	on	Software	Maintenance	and	Evolution	(ICSME)	(pp.	227-238).	IEEE.	

- CNN.	(2020).	Wanted	urgently:	People	who	know	a	half-century-old	computer	language	so	

states	can	process	unemployment	claims.	https://edition.cnn.com.	Retrieved	October	15,	

2023,	from	https://edition.cnn.com/2020/04/08/business/coronavirus-cobol-

programmers-new-jersey-trnd/index.html	

- De	Marco,	A.,	Iancu,	V.,	&	Asinofsky,	I.	(2018).	COBOL	to	Java	and	Newspapers	Still	Get	

Delivered.	IEEE	Software.	https://doi.org/10.1109/icsme.2018.00055	

- Dijkstra,	E.	(1968,	March).	Edgar	Dijkstra:	Go	To	statement	Considered	Harmful.	

https://homepages.cwi.nl.	Retrieved	July	3,	2023,	

from	https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf	

- Dorninger,	B.,	Moser,	M.,	&	Pichler,	J.	(2017).	Multi-language	re-documentation	to	support	a	

COBOL	to	Java	migration	project.	International	Conference	on	Software	Analysis,	Evolution	

and	Reengineering	(SANER).	https://doi.org/10.1109/saner.2017.7884669	

https://readwrite.com/cobol-programming-language-hot-or-not/
https://www.astadia.com/blog/migrating-cobol-to-java-with-automated-conversion
https://doi.org/10.1109/wcre.2003.1287247
https://slate.com/technology/2020/04/new-jersey-unemployment-cobol-coronavirus.html
https://slate.com/technology/2020/04/new-jersey-unemployment-cobol-coronavirus.html
https://doi.org/10.1109/icsme.2018.00055
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

	
	

38	
	

- Dubov,	A.	(2023,	May	28).	The	secret	failure	in	the	banking	system	of	migrating	from	

COBOL.	Medium.	https://medium.com/@alxdubov/the-failure-of-the-banking-system-to-

migrate-from-cobol-is-a-complex-issue-with-many-factors-7189279d7181	

- Enlyft.	(2023,	March	8).	COBOL	commands	0.48%	market	share	in	Programming	Languages.	

Retrieved	May	10,	2023,	from	https://enlyft.com/tech/products/COBOL	

- Ensmenger,	N.	(2011).	The	computer	boys	take	over:	computers,	programmers,	and	the	

politics	of	technical	expertise.	Choice	Reviews	Online,	48(06),	

100.	https://doi.org/10.5860/choice.48-3324	

- Ghoshal,	A.	(2023,	22	augustus).	IBM	WatsonX	to	use	generative	AI	to	translate	COBOL	code	

into	Java.	InfoWorld.	https://www.infoworld.com/article/3705251/ibm-watsonx-to-use-

generative-ai-to-translate-COBOL-code-into-java.html	

- Glass,	R.	L.	(1997,	September).	COBOL	-	A	Contradiction	and	an	Enigma.	Communications	of	

the	ACM,	40(9).	Retrieved	from	https://dl.acm.org/doi/pdf/10.1145/260750.260752	

- GnuCOBOL	-	GNU	Project.	(2023).	Retrieved	from	https://GnuCOBOL.sourceforge.io/	

- Grace	Hopper	and	the	invention	of	the	information	age.	(2010).	Choice	Reviews	

Online,	47(06),	47–3208.	https://doi.org/10.5860/choice.47-3208	

- Hercules.	(2015,	November	30).	Hercules	–	Installation	Guide	Version	3.12.	

https://hercdoc.glanzmann.org.	https://hercdoc.glanzmann.org/V312/HerculesInstallation.

pdf	

- IBM	Documentation.	(2022).	Retrieved	from	https://www.ibm.com/docs/en/COBOL-

zos/6.3?topic=appendixes-option-comparison	

- IBM Enterprise COBOL for z/OS. (2023.). https://www.ibm.com/products/cobol-compiler-zos

- IBM.	(2023).	CICS	Transaction	Server	for	z/OS.	Retrieved	May	10,	2023,	from	

https://www.ibm.com/docs/en/SSGMCP_5.5.0/pdf/java-applications_pdf.pdf	

- Jones,	C.	(1997,	January).	The	global	economic	impact	of	the	year	2000	software	problem.	

Retrieved	from	https://www.govinfo.gov/content/pkg/GPO-CPRT-106sprt10/pdf/GPO-

CPRT-106sprt10-6.pdf	

- Kappelman,	L.	A.	(2000,	March/April).	Some	Strategic	Y2K	Blessings.	IEEE	Software.	

Retrieved	from	

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3fa057087d13a94bb7

45bc29c9f1cf1a17a626a1	

- Marcotty,	M.,	&	Ledgard,	H.	(1987).	The	world	of	programming	languages.	Springer	books	on	

professional	computing.	https://doi.org/10.1007/978-1-4612-4692-3	

- Micro	Focus.	(2022,	januari).	How	much	COBOL	is	out	there.	Brighttalk.	Geraadpleegd	op	12	

september	2023,	van	https://www.brighttalk.com/resource/core/379731/how-much-

COBOL-is-really-out-there_819568.pdf	

https://enlyft.com/tech/products/cobol
https://doi.org/10.5860/choice.48-3324
https://dl.acm.org/doi/pdf/10.1145/260750.260752
https://gnucobol.sourceforge.io/
https://doi.org/10.5860/choice.47-3208
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=appendixes-option-comparison
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=appendixes-option-comparison
https://www.ibm.com/docs/en/SSGMCP_5.5.0/pdf/java-applications_pdf.pdf
https://www.govinfo.gov/content/pkg/GPO-CPRT-106sprt10/pdf/GPO-CPRT-106sprt10-6.pdf
https://www.govinfo.gov/content/pkg/GPO-CPRT-106sprt10/pdf/GPO-CPRT-106sprt10-6.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3fa057087d13a94bb745bc29c9f1cf1a17a626a1
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3fa057087d13a94bb745bc29c9f1cf1a17a626a1
https://doi.org/10.1007/978-1-4612-4692-3

	
	

39	
	

- Murach,	M.	(2001,	February).	Is	COBOL	Dying	...	or	Thriving?	The	COBOL	Newswire.	

Retrieved	from	https://dl.acm.org/doi/pdf/10.1145/342251.342256	

- No,	COBOL	is	not	a	dead	language.	(2021,	February	8).	Data	Center	Knowledge	|	News	and	

Analysis	for	the	Data	Center	Industry.	https://www.datacenterknowledge.com/design/no-

cobol-not-dead-language	

- PYPL	PopularitY	of	Programming	Language	index.	(2023).	Retrieved	from	

https://pypl.github.io/PYPL.html	

- Reis,	R.	(2021).	Proposal	of	a	learning	design	model	developed	for	the	creation	of	training	

courses:	COBOL	Programming	Course	Case	Study.	https://eric.ed.gov/?id=ED621914	

- Ricciuti,	M.	(1998,	January	6).	CA	ships	another	Y2K	tool.	CNET.	Retrieved	from	

https://www.cnet.com/tech/tech-industry/ca-ships-another-y2k-tool/	

- Rodríguez,	J.	M.,	Crasso,	M.,	Mateos,	C.,	Zunino,	A.,	&	Campo,	M.	(2011).	Bottom-up	and	top-

down	COBOL	system	migration	to	Web	Services:	An	experience	report.	IEEE	Internet	

Computing.	https://doi.org/10.1109/mic.2011.162	

- Ryan, M. (2022, January 5). Back to the Future with Codex and COBOL - Towards Data

Science. Medium. https://towardsdatascience.com/back-to-the-future-with-codex-and-cobol-

766782f5ae8f

- Sammet,	J.	E.	(1978).	The	early	history	of	COBOL.	Sigplan	Notices,	13(8),	121–

161.	https://doi.org/10.1145/960118.808378	

- Sneed,	H.	M.	(2001).	Extracting	business	logic	from	existing	COBOL	programs	as	a	basis	for	

redevelopment.	https://doi.org/10.1109/wpc.2001.921728	

- Sneed,	H.	M.	(2009).	A	pilot	project	for	migrating	COBOL	code	to	web	services.	International	

Journal	on	Software	Tools	for	Technology	Transfer,	11(6),	441–

451.	https://doi.org/10.1007/s10009-009-0128-z	

- Sneed,	H.	M.,	&	Erdoes,	K.	(2013).	Migrating	AS400-COBOL	to	Java:	A	Report	from	the	Field.	

https://doi.org/10.1109/csmr.2013.32	

- Sneed,	H.	M.,	&	Verhoef,	C.	(2020).	From	COBOL	to	Business	Rules—Extracting	Business	

Rules	from	Legacy	Code.	Integrating	Research	and	Practice	in	Software	Engineering,	187-

208.	

- Stack	Overflow	Developer	Survey	2022.	(2022.).	Stack	

Overflow.	https://survey.stackoverflow.co/2022/#most-popular-technologies-language	

- Suganuma,	T.,	Yasue,	T.,	Onodera,	T.,	&	Nakatani,	T.	(2008).	Performance	pitfalls	in	large-

scale	java	applications	translated	from	COBOL.	Companion	to	the	23rd	ACM	SIGPLAN	

Conference	on	Object-oriented	Programming	Systems	Languages	and	Applications.	

https://doi.org/10.1145/1449814.1449822	

https://dl.acm.org/doi/pdf/10.1145/342251.342256
https://www.datacenterknowledge.com/design/no-cobol-not-dead-language
https://www.datacenterknowledge.com/design/no-cobol-not-dead-language
https://pypl.github.io/PYPL.html
https://www.cnet.com/tech/tech-industry/ca-ships-another-y2k-tool/
https://doi.org/10.1109/mic.2011.162
https://doi.org/10.1145/960118.808378
https://doi.org/10.1109/wpc.2001.921728
https://doi.org/10.1109/csmr.2013.32
https://doi.org/10.1145/1449814.1449822

	
	

40	
	

- The	Cloud	for	Mainframe	&	COBOL:	Migration	&	Modernization.	(2023).	

https://www.microfocus.com/en-us/destination-cloud	

- Thibodeau,	P.	(2013,	April	8).	Should	universities	offer	Cobol	classes?	Computerworld.	

https://www.computerworld.com/article/2828320/should-universities-offer-cobol-

classes-.html	

- TIOBE	Index	-	TIOBE.	(2022,	June	3).	TIOBE.	https://www.tiobe.com/tiobe-index/	

- Tmaxsoft.	(2021).	Tmaxsoft	OpenFrame:	A	Modern	Platform	for	COBOL	Applications.	

Retrieved	May	10,	2023,	from	https://www.tmaxsoft.com/wp-

content/uploads/TmaSof_eBook_OpenFrame_2021.pdf	

- TmaxSoft.	(2022,	November	10).	Mainframe	Modernization	|	OpenFrame|	TMAXSoft.	

Retrieved	from	https://www.tmaxsoft.com/products/openframe/	

- Van	Assen,	M.,	Ntagengerwa,	M.	A.,	Sayilir,	Ö.,	&	Zaytsev,	V.	(2023).	Crossover:	Towards	

Compiler-Enabled	COBOL-C	Interoperability.	Association	for	Computing	Machinery.	

https://doi.org/10.1145/3624007.3624055	

- Wayner,	P.	(2022,	June	27).	Why	programmers	still	love	COBOL.	

TechBeacon. https://techbeacon.com/enterprise-it/why-programmers-still-love-

cobol#:~:text=%22It%27s%20still%20here%20primarily%20because,build%20on%20top%20of%

20it.%22

- Young, D. A. (2000). Reflection on Y2K. PM Network, 14(7), 37–41.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

https://www.microfocus.com/en-us/destination-cloud
https://www.computerworld.com/article/2828320/should-universities-offer-cobol-classes-.html
https://www.computerworld.com/article/2828320/should-universities-offer-cobol-classes-.html
https://www.tmaxsoft.com/wp-content/uploads/TmaSof_eBook_OpenFrame_2021.pdf
https://www.tmaxsoft.com/wp-content/uploads/TmaSof_eBook_OpenFrame_2021.pdf
https://www.tmaxsoft.com/products/openframe/
https://techbeacon.com/enterprise-it/why-programmers-still-love-cobol#:~:text=%22It%27s%20still%20here%20primarily%20because,build%20on%20top%20of%20it.%22
https://techbeacon.com/enterprise-it/why-programmers-still-love-cobol#:~:text=%22It%27s%20still%20here%20primarily%20because,build%20on%20top%20of%20it.%22
https://techbeacon.com/enterprise-it/why-programmers-still-love-cobol#:~:text=%22It%27s%20still%20here%20primarily%20because,build%20on%20top%20of%20it.%22

	
	

41	
	

6 Appendices	
	
Appendix	1:	COBOL	compiler	release	cycle		

	
The	Release	Cycle	Giant	Chart	provides	a	comprehensive	overview	of	various	compilers	and	their	
respective	 life	 cycles.	 This	 visually	 striking	 chart	 effectively	 distinguishes	 between	 support	
duration,	 denoted	 in	 green,	 and	 currently	 supported	 versions,	 represented	 in	 yellow	 and	 a	
vertical	red	line	indicating	the	current	timestamp.		

1974 1980 1985 1991 1996 2002 2007 2013 2018 2024

OS/VS	COBOL	1.2.3

OS/VS	COBOL	1.2.4

VS	COBOL	II	1.3

VS	COBOL	II	1.4

COBOL/370	1.1

COBOL	for	MVS™ &	VM	1.2

COBOL	for	OS/390®	&	VM	2.1

COBOL	for	OS/390	&	VM	2.2

Enterprise	COBOL	for	z/OS®
3.1

Enterprise	COBOL	for	z/OS	3.2

Enterprise	COBOL	for	z/OS	3.3

Enterprise	COBOL	for	z/OS	3.4

Enterprise	COBOL	for	z/OS	4.1

Enterprise	COBOL	for	z/OS	4.2

Enterprise	COBOL	for	z/OS	5.1

Enterprise	COBOL	for	z/OS	5.2

Enterprise	COBOL	for	z/OS	6.1

Enterprise	COBOL	for	z/OS	6.2

Enterprise	COBOL	for	z/OS	6.3

Enterprise	COBOL	for	z/OS	6.4

Cobol	compiler	release	cycle

Support duration Bug/security updates

	
	

42	
	

Appendix	2:	COBOL	test	results	

The	below	programs	work	with	GnuCOBOL	Compiler	3.1.2	and	Enterprise	z/OS	6.3.	

Program	name	 Code		 Result	
	

Xml-	generator	 IDENTIFICATION	DIVISION.																																																							
PROGRAM-ID.	GJ758.				
Author.Ashish.																																			
ENVIRONMENT	DIVISION.																																			
CONFIGURATION	SECTION.																																		
SOURCE-COMPUTER.					IBM-370.																											
OBJECT-COMPUTER.					IBM-370.																											
SPECIAL-NAMES.																																										
				DECIMAL-POINT	IS	COMMA.																													
INPUT-OUTPUT	SECTION.																																			
FILE-CONTROL.																																											
				SELECT	XML-FILE									ASSIGN	TO	GJ758O01.									
				SELECT	SSF-FILE											ASSIGN	TO	GJ758I01.									
				SELECT	XML-LOGS									ASSIGN	TO	GJ758L01.									
DATA	DIVISION.																																										
FILE	SECTION.																																											
FD		XML-FILE																																												
				BLOCK	CONTAINS	0.																																			
01	XML-OUTPUT								PIC	X(2600).																							
FD		XML-LOGS																																												
				BLOCK	CONTAINS	0.																																			
01	XML-LOG-OUTPUT				PIC	X(100).																																		
FD		SSF-FILE																																																						
				BLOCK	CONTAINS	0.																																													
	 	
01		GJ-XMLINPUT.																																																																	
				03	IN-001											PIC	X(50).																																
				03	IN-002											PIC	X(12).																																
				03	IN-003											PIC	X(15).																																
				03	IN-004											PIC	X(12).																																
			
01	SSF-XML-REC.																																																							
		03	RC.																																																														
				05	OUT-001																PIC	X(50).																														
				05	OUT-002																PIC	X(12).																														
				05	OUT-003																PIC	X(15).																														
				05	OUT-004																PIC	X(12).																														
									
2110-MANUAL-COPY-INPUT.																																										
				INITIALIZE	SSF-XML-REC																																							
				MOVE	IN-001										TO						INPUT-ALPHANUM																		
																									PERFORM	CHECK-ALPHANUM																		
																									MOVE				REPLY-ALPHANUM																		
					TO	OUT-001																																																		
				MOVE	IN-002										TO						INPUT-ALPHANUM																		
																									PERFORM		CHECK-ALPHANUM																		
																									MOVE				REPLY-ALPHANUM																		
					TO	OUT-002																																																		
				MOVE	IN-003										TO						INPUT-ALPHANUM																		
																									PERFORM	CHECK-ALPHANUM																		
																									MOVE				REPLY-ALPHANUM																		
					TO	OUT-003																																																		
				MOVE	IN-004										TO						INPUT-ALPHANUM																		
																									PERFORM	CHECK-ALPHANUM																		
																									MOVE				REPLY-ALPHANUM																		
					TO	OUT-004																																																		
				.																																																													
2400-XML-PARA.																																																							
				XML	GENERATE	XML-OUTPUT	FROM	SSF-XML-
REC																									
				COUNT	IN	WS-COUNT																																																
				WITH	ENCODING	1047																																															
				NAME	OF																																																										
				SSF-XML-REC	IS	'ProductIsForCounterparty'																								
				OUT-001		IS	'Product'																																												
				OUT-002		IS	'ProductSourceSystemIdentifier'																						
				OUT-003		IS	'Counterparty'																																							
				OUT-004		IS	
'CounterpartySourceSystemIdentifier'																	
				SUPPRESS																																																									

<ProductIsForCounterparty><Product>122</Product><Produ
ctSourceSystemIdentifier>aab.sys1</ProductSourceSystemIde
ntifier><Counterparty>b09484</Counterparty><Counterpart
ySourceSystemIdentifier>AAB</CounterpartySourceSystemId
entifier></ProductIsForCounterparty>	
	
Required	JCl	to	execute	the	program.	
	
//GJ758	JOB	GJ000000,	MSGCLASS=G,CLASS=P,	
NOTIFY=ashish	
//STEP01	EXEC	PGM=GJ758		
//STEPLIB	DD	DSN=LBPS$.PR.LOADLIB,	DISP=SHR		
//GJ758I01		DD	DSN=ZJ000.sortout.pmgj768,		
//	GJ758O01	DD	DSN=zjooo.sortout.pmgj768.outputfile		
//								DISP=(NEW,CATLG,DELETE),SPACE=(CYL,(1,1),RLSE),		
//											DCB=(RECFM=FB,LRECL=40,BLKSIZE=0)		
//SYSPRINT	DD	SYSOUT=*		
//SYSOUT	DD	SYSOUT=A		
//	
	

	
	

43	
	

				EVERY	NONNUMERIC	ELEMENT	WHEN	SPACES																													
				.																																																																
				EXIT.																																																														
	END	PROGRAM	GJ758.					
	

XMl-Generator	
GnuCOBOL	

IDENTIFICATION	DIVISION.	
PROGRAM-ID.	XMLGENERATOR.	
Author.	Ashish.	
DATA	DIVISION.	
WORKING-STORAGE	SECTION.	
01	XML-OUTPUT	PIC	X(500).	
01	XML-TEMPLATE.	
		05	XML-DECLARATION	PIC	X(40)	
						VALUE	'<?xml	version="1.0"	encoding="UTF-
8"?>'.	
		05	XML-ROOT-ELEMENT	PIC	X(500)	
						VALUE	'<COBOLthesis>'.	
		05	XML-PERSON-ELEMENT	PIC	X(500)	
						VALUE	'		<person>'.	
		05	XML-NAME-ELEMENT	PIC	X(500)	
						VALUE	'				<name>ashish</name>'.	
		05	XML-AGE-ELEMENT	PIC	X(500)	
						VALUE	'				<age>24</age>'.	
		05	XML-END-TAG	PIC	X(500)	
						VALUE	'		</person>'.	
		05	XML-END-ROOT-ELEMENT	PIC	X(500)	
						VALUE	'</COBOLthesis>'.	
PROCEDURE	DIVISION.	
				MOVE	XML-DECLARATION	TO	XML-OUTPUT	
				XML	GENERATE	XML-OUTPUT	FROM	XML-
TEMPLATE	
				DISPLAY	XML-OUTPUT	
				STOP	RUN.	

<?xml	version="1.0"	encoding="UTF-8"?>	
<COBOLthesis>	
		<person>	
				<name>ashish</name>	
				<age>24</age>	
		</person>	
</COBOLthesis>	

	
	

44	
	

99	Bottles	of	
Bears	1	

	

	

Y2k	problem	

	

	

	
	

45	
	

Y2k	solution	

	

	

GOTO1	

	

	

GOTO1	Solution	

	

	

	
	

46	
	

GOTO2	

	

	

GOTO2	Solution	

	

	

	
	

47	
	

99	Bottle	of	bear	
2	

	

	

	
	

48	
	

	
	

	
	

49	
	

	

	
	

50	
	

Dayfinder	

	

	

	
	

51	
	

If	else	
implementation	

	

	

	
	

52	
	

Prime	number	

	

	

	
	

53	
	

Random	number	
generator	

	

	

	
	

54	
	

Sort	

	

	

	
	

55	
	

Current	date	

	

	

	
	

56	
	

Fibonacci	
sequence	

	

	

	
	

57	
	

Mileage	counter	

	

	

Perform	
program	1	

	

	

	
	

58	
	

Iteration	

	

	

Multiplier	

	

	

	
	

59	
	

Accept	and	
display	

	

	

	
Github	Repository:	https://github.com/ashish27081998/COBOL_test_Programs.git	
	

	

	

	

	

	
	
	
	
	
	
	
	
	

	

https://github.com/ashish27081998/Cobol_test_Programs.git

	
	

60	
	

Appendix	3:	Interviews	
1. How	has	COBOL	been	utilized	 in	 the	 IT	 systems	of	a	 leading	bank	 in	 the	Netherlands,	and	which	

critical	applications	have	been	constructed	using	this	language?	
- Answer	1:	This	bank	has	critical	applications	like	Payments,	Transactions,	FBS	which	uses	batch	

processing.	 COBOL	 as	 a	 programming	 language	 helps	 in	 bulk	 data	 processing	 on	 mainframe	
without	user	 interaction.	Large	chunks	of	data	can	be	processed	 in	no	 time.	The	processing	 is	
optimized	and	efficient.	
	

- Answer	2:	 COBOL	 has	 been	 extensively	 used	 in	 this	 banks	 IT	 systems,	 particularly	 in	 critical	
applications.	 Some	 specific	 applications	 built	 using	 COBOL	 include	 payments	 processing,	 core	
banking,	 transaction	 settlement,	 risk	 management,	 and	 customer	 information	 systems.	 These	
applications	rely	on	COBOL's	reliability,	efficiency,	and	secure	data	processing	for	their	essential	
functions.	
	

2. What	impact	did	the	Y2K	bug,	also	referred	to	as	the	Year	2000	bug	or	Millennium	Bug,	bring	upon	
computerized	systems,	and	how	did	it	influence	the	bank's	operations?	How	did	the	bank	tackle	this	
issue?	

- Answer	1:	When	complicated	computer	programs	were	being	written	in	early	days,	a	two-digit	
code	was	used	for	the	year.	The	"19"	was	left	out.	Instead	of	a	date	reading	1987,	it	read	87.	With	
2000,	it	would	have	become	00.	It	posed	a	serious	challenge	to	the	banking	industry,	as	failure	to	
address	this	may	disrupt	banking	operations,	such	as	settlement	and	interest	calculation.	Banks	
had	to	adjust	their	systems	to	process	four-digit	code	for	year	instead	of	two.	Majority	of	the	Banks	
fixed	the	issue	on	time	to	be	compliant	of	the	Y2K	problem.	
	

- Answer	2:	The	Y2K	bug	posed	a	significant	risk	to	our	computerized	systems.	It	had	the	potential	
to	 cause	 disruptions	 and	 incorrect	 calculations.	 To	 address	 this	 issue,	 we	 conducted	
comprehensive	remediation	programs,	updating	our	systems	and	applications	to	handle	four-digit	
year	 representations	 correctly	 manually.	 Extensive	 testing	 was	 done	 to	 ensure	 a	 smooth	
transition,	and	as	a	result,	we	avoided	major	disruptions	during	the	year	2000	rollover.	
	

3. Which	 versions	 of	 COBOL	 has	 the	 bank	 used	 over	 the	 years,	 and	 which	 version	 is	 presently	 in	
operation?	

- Answer	1:	 COBOL	 as	 a	 programming	 language	was	 developed	 in	 1959.	 The	 first	 version	was	
released	in	1960	which	was	called	COBOL-60.	There	have	been	multiple	versions	after	1960.	The	
current	version	available	is	6.4.	In	this	bank	version	6.3	is	used	for	all	the	COBOL	programs.	
	

- Answer	2:	Throughout	its	lifecycle	till	now,	the	bank	has	used	various	versions	of	COBOL.	The	
specific	 versions	 used	may	 vary	 across	 different	 systems	 and	 applications.	However,	 over	 the	
years,	 we	 have	 upgraded	 and	 migrated	 to	 newer	 versions	 of	 COBOL	 to	 stay	 current	 with	
technology	advancements.	As	of	the	present,	the	bank	is	currently	using	COBOL	version	6.3.		

	
	

61	
	

While	newer	versions	may	have	been	released	since	then,	the	decision	to	adopt	the	latest	version	
depends	 on	 factors	 such	 as	 compatibility,	 reliability,	 and	 security.	 Our	 IT	 teams	 continuously	
evaluate	the	benefits	and	potential	risks	associated	with	upgrading	to	newer	versions	to	ensure	
the	stability	and	efficiency	of	our	systems.	
	

4. What	were	the	primary	reasons	for	the	decision	to	upgrade	to	a	newer	version	of	COBOL,	and	why	
was	the	current	version	selected	over	others?	Does	the	latest	version	offer	enhancements,	superior	
libraries	or	other	features	absent	in	the	prior	iteration?	Can	you	provide	examples?	

- Answer	1:	New	COBOL	version	helps	to	maximize	hardware	utilization,	reduce	CPU	usage,	and	
improve	performance	of	critical	applications.	Advanced	data	conversion	methods	are	introduced	
which	enhances	data	processing.	
	

- Answer	2:	upgrading	to	the	current	version	of	COBOL	brings	numerous	advantages,	making	it	a	
valuable	 decision	 for	 the	 bank.	 It	 not	 only	 enhances	 the	 performance	 and	 security	 of	 critical	
applications	but	also	ensures	that	the	bank	remains	competitive	and	up	to	date	with	the	latest	
developments	in	the	industry.	
	

5. What	 are	 the	main	 reasons	 the	 bank	 persists	 in	 employing	 systems	 coded	 in	 COBOL?	 Is	 COBOL	
deemed	irreplaceable	in	the	bank's	operations?	

- Answer	1:	COBOL	is	the	best	when	it	comes	to	batch	processing.	 It	 is	robust,	and	easy	to	test,	
debug	and	analyse.	Millions	and	millions	of	data	can	be	processed	in	no	time.	Optimized	programs	
result	in	cost	savings.	COBOL	can	be	replaced	with	languages	like	JAVA,	but	they	cannot	handle	
such	huge	data	processing.	Batch	processing	on	mainframe	is	more	secured.	
	

- Answer	2:	The	bank	continues	to	use	COBOL	for	its	stability,	cost-effectiveness,	and	expertise.	
While	 not	 considered	 irreplaceable,	 the	 complexity	 of	 legacy	 systems	 and	 cost	 considerations	
make	a	complete	transition	to	newer	technologies	challenging.	A	balanced	approach	is	taken	to	
leverage	COBOL's	strengths	while	exploring	modernization	opportunities.	
	

6. How	has	the	bank	addressed	the	challenge	of	upkeeping	and	refreshing	aging	COBOL	systems	over	
the	years?	

- Answer	 1:	 Maintaining	 and	 updating	 COBOL	 systems	 are	 highly	 challenging.	 For	 example,	 a	
version	upgrade	 involves	activities	 like	recompiling	programs,	 testing	etc.	The	benefit	of	using	
COBOL	is	more	than	the	efforts	involved	in	maintaining	it.	
	

- Answer	 2:	 The	 bank	 has	 addressed	 legacy	 COBOL	 systems	 through	 continuous	maintenance,	
selective	modernization,	skill	development	for	IT	teams,	integration	with	new	technologies,	risk	
management,	collaboration	with	vendors,	business	prioritization,	and	long-term	planning.	This	
strategic	 approach	 allows	 the	 bank	 to	 maintain	 stability	 while	 gradually	 adapting	 to	 newer	
technologies.	

	
	

62	
	

7. What	 steps	 is	 the	 bank	 implementing	 to	 guarantee	 the	 security	 and	dependability	 of	 its	 COBOL-
integrated	systems?	

- Answer	 1:	 Safe	 coding	 practices	 which	 includes	 data	 encryption,	 multi-factor	 authentication,	
proper	input	validation	is	introduced	which	keeps	the	systems	up	and	running.	They	are	more	
reliable.	
	

- Answer	2:	Through	regular	security	updates,	data	encryption,	secure	coding	practices,	security	
audits,	disaster	recovery	plans,	compliance	with	regulations,	employee	training,	and	collaboration	
with	security	experts.	These	measures	protect	customer	data	and	maintain	the	stability	of	critical	
services.	

8. How	 has	 the	 integration	 of	 emerging	 technologies,	 such	 as	 cloud	 computing	 and	 artificial	
intelligence,	affected	the	bank's	deployment	of	COBOL	within	its	IT	infrastructure?	

- Answer	1:	Not	to	a	larger	extent.	The	new	technologies	offer	digital	transformation,	but	COBOL	
works	too	well.		
	

- Answer	2:	Not	a	lot.	
	

9. In	what	manner	has	COBOL	supported	the	bank	in	realizing	its	business	goals,	and	are	there	any	
perceived	disadvantages	linked	with	its	usage?	

- Answer	1:	As	a	bank,	processing	of	payments	and	transactions	at	a	faster	rate	is	importance	which	
will	 make	 customers	 happy.	 COBOL	 facilitates	 batch	 processing.	 The	 changing	 infrastructure,	
requirements	may	 raise	 challenges	 for	 the	 organization.	 It	 is	 becoming	 difficult	 to	 get	 COBOL	
experienced	resources.	
	

- Answer	2:	COBOL	has	helped	 the	bank	 to	achieve	 its	business	objectives	 through	 its	 stability,	
efficient	 data	 processing,	 and	 cost-effectiveness.	 However,	 potential	 drawbacks	 include	 talent	
shortage,	integration	challenges	with	modern	technologies,	limited	advancements,	and	concerns	
about	long-term	viability.	
	

10. How	critical	is	COBOL	in	the	bank's	IT	framework,	and	what	is	the	institution's	vision	regarding	its	
ongoing	use?	Are	there	discussions	about	transitioning	to	a	distinct	coding	language?	

- Answer	1:	COBOL	will	remain	in	place	until	the	Bank	does	payments	and	transactions.	It	will	be	
hard	to	replace	it	with	more	digitized	solutions	using	cloud	computing,	AI.	Replacing	or	rewriting	
what	is	done	in	COBOL	will	pose	a	challenge	and	risk	to	the	way	Bank	operates.	It	would	require	
lot	of	resources,	time,	and	money.	Weighing	at	the	advantages	of	processing	vast	amounts	of	data,	
COBOL	will	stay	for	many	more	years	to	come.	
	
	

	
	

63	
	

- Answer	2:	COBOL	will	continue	to	be	the	backbone	of	our	operations	as	long	as	payments	and	
transactions	are	core	functions	of	the	bank.	While	there	is	a	push	towards	more	digitized	solutions	
using	 cloud	 computing	 and	 AI,	 the	 idea	 of	 replacing	 or	 rewriting	 what	 we	 have	 in	 COBOL	 is	
daunting.	It	would	pose	significant	challenges	and	risks	to	the	way	our	bank	operates.	Replacing	
COBOL-based	systems	would	demand	substantial	resources,	time,	and	financial	investments.		
It	 would	 be	 a	 complex	 process,	 and	 any	 disruption	 to	 critical	 banking	 functions	 during	 the	
transition	 could	 have	 severe	 consequences.	 Given	 the	 advantages	 COBOL	 offers	 in	 efficiently	
processing	vast	amounts	of	data,	it	remains	a	reliable	choice	for	handling	critical	operations.	
	

11. How	do	you	envision	the	role	of	this	language	in	the	forthcoming	IT	strategy	of	the	bank?	
- Answer	1:	COBOL	will	still	be	an	integral	part	of	the	Bank	as	it	facilitates	batch	processing	in	a	

more	controlled,	secured,	efficient,	cost-effective	way.	
	

12. Are	 there	 any	 other	 noteworthy	 details	 concerning	 the	 bank's	 adoption	 of	 COBOL	 that	 merit	
attention?	

- Answer	 1:	 I	 have	 worked	 on	 batch	 systems	 which	 run	 on	 COBOL	 processing	 Payments,	
transactions,	customer	data.	These	systems	are	critical	and	play	a	key	role	in	the	functioning	of	
the	Bank.	
	

13. How	many	COBOL	developers	are	there	at	the	bank,	and	in	what	age	categories?	
- Answer	1:	Among	our	team,	20	people	know	the	mainframe.	In	the	accounting	department,	FBS	

is	the	sole	mainframe	system.	The	reporting	Basel	department	also	uses	the	mainframe,	but	only	
a	 few	people	 support	 it.	 In	 comparison,	 FBS	 has	 about	 4	 or	 5.	 Systems	 like	 core	 banking	 and	
transaction	also	use	mainframes.	On	average,	this	specific	bank	has	between	150-200	employees	
working	directly	with	mainframe	systems.	
	

14. How	many	COBOL	programs	are	there?	
- Answer	1:	 the	bank	currently	operates	around	27,000	active	COBOL	programs,	with	a	total	of	

57,000	when	including	those	that	have	been	deleted.	30,000	programs	were	filtered	out	when	
removed.	Although	the	number	of	COBOL	programs	is	decreasing,	the	bank	is	in	the	process	of	
replacing	some	of	these	systems	with	Java	and	other	languages.	Systems	such	as	OneSumX	and	
Beam	are	using	 Informatica	ETL,	Hadoop,	and	Databricks	 to	replace	FBS.	The	bank's	goal	 is	 to	
migrate	to	Azure,	resulting	in	the	decline	of	COBOL	lines	every	year.	
	
	
	
	
	
	
	

	
	

64	
	

15. Does	the	bank	utilize	modern	development	processes	or	practices	within	the	COBOL	teams,	such	as	
automated	 testing,	 version	 control	 with	 feature	 branches,	 tools	 for	 code	 quality	 measurements,	
scrum	 or	 kanban,	 automated	 deployment	 pipelines?	 Which	 practices	 specifically?	 Has	 the	 bank	
considered	using	Micro	Focus,	GnuCOBOL,	or	other	alternatives	to	be	less	reliant	on	IBM	COBOL?	

- Answer	 1:	 Automated	 tests	 are	 conducted	 at	 the	 bank.	 FBS	 utilizes	 Jenkins	 for	 testing,	 and	
SonarQube	 for	 quality	 control.	 This	 setup	 forms	 the	 continuous	 integration	 pipeline.	 When	
promoting	a	component	from	unit	testing	to	a	higher	environment,	the	pipeline	gets	triggered,	
executing	test	cases.	The	bank	also	uses	Topaz	for	COBOL	compilation.	In	addition,	ISPW	version	
6.3	is	in	use,	and	Topaz	serves	as	a	tool	for	importing	and	compiling	the	code.	These	systems	are	
integrated	into	the	bank's	infrastructure.	While	the	bank	does	not	solely	depend	on	the	COBOL	
compiler,	it	integrates	other	systems	into	its	operations.		
	

16. Does	the	bank	have	anything	specific	for	DB2?		
- Answer	1:	The	bank	does	not	have	any	specific	tools	solely	for	DB2,	but	SAS	can	be	integrated	

with	 it.	Using	SAS	Enterprise	Guide,	one	 can	 connect	with	DB2	 tables	and	query	 them.	Bridge	
Cobra	is	specific	to	this	bank	and	simplifies	the	management	of	complex	table	relationships.	
	

17. 	Is	there	a	risk	related	to	knowledge	transfer?	
- Answer	1:	Within	our	team,	the	balance	of	knowledge	is	maintained.	However,	that	is	not	the	case	

across	all	teams.	In	the	past,	there	were	challenges	when	experienced	employees	were	nearing	
retirement,	leaving	only	younger	team	members.	Achieving	the	same	level	of	expertise	as	a	30-
year	veteran	in	 just	a	 few	years	 is	tough.	Additionally,	some	employees	were	hesitant	to	share	
their	expertise,	 fearing	 job	security,	especially	 those	 from	IBM.	The	current	 trend	 is	a	younger	
workforce	with	a	more	open	mindset.	The	bank	is	looking	at	a	transition	to	Azure	in	the	next	5-7	
years,	but	 it	 is	unlikely	 that	mainframes	will	be	 completely	phased	out	due	 to	 their	 strengths,	
especially	in	handling	large	batches	of	data	safely.	

	
18. Does	this	mean	mainframes	are	unhackable?	
- Answer	1:	No	system	is	truly	unhackable.	While	I	have	production	access	and	could	exploit	 it,	

everything	is	logged	and	traceable.	Authorization	is	crucial,	and	merely	having	access	does	not	
provide	 full	 control.	 Mainframes	 might	 not	 be	 fool	 proof,	 but	 they	 offer	 better	 security	 than	
alternatives.		

	
	
	
	
	
	
	
	

	
	

65	
	

Appendix	4:	COBOL	repository	

	

In	the	repository,	
there	are	
currently	1,000	
listed	COBOL	
programs.	An	
additional	30,139	
records	have	
been	discarded,	
bringing	the	total	
number	of	
available	COBOL	
programs	
historically	to	
31,139.	

	

In	the	repository	
including	deleted	
ones,	1,000	
COBOL	programs	
are	actively	
listed.	
Additionally,	
57,081	records	
have	been	
discarded.	This	
means	that	
historically,	there	
have	been	a	total	
of	58,081	COBOL	
programs.	

	
	

66	
	

	

	

Update	that	this	
bank	will	be	
using	the	
compiler	6.3	
after	the	
upgrade.	

	
	
Appendix	5	:	Jenkins	and	SonarQube		
	
Jenkins		
Jenkins	evaluates	the	COBOL	components	to	ensure	it	complies	with	all	the	standards	set	
by	the	bank	for	a	COBOL	component.	

	
	
	
	
	
	

	
	

67	
	

SonarQube	
SonarQube	evaluates	 the	COBOL	code	to	ensure	 its	code	quality	and	 if	 it	meets	all	 the	
requirement	for	a	code	prescribed	by	the	bank.	Once	all	checks	are	validated	an	email	will	
be	 sent	 to	 the	 user	 that	 the	 program	 can	 be	 successfully	 deployed	 to	 a	 higher	
environment.		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

68	
	

Appendix	6:	Academic	papers	related	to	migration	of	COBOL.		
1. COBOL	to	Java	
Paper	Title	 Key	Findings	and	Relevance	to	Thesis	
De	Marco,	A.,	Iancu,	V.,	&	Asinofsky,	I.	(2018).	COBOL	to	Java	and	
Newspapers	Still	Get	Delivered.	ICSME.	
https://doi.org/10.1109/icsme.2018.00055	

Discusses	practical	COBOL-to-Java	
migration	and	its	real-world	implications.	

Brüne,	P.	(2018).	A	Hybrid	Approach	to	Re-Host	and	Mix	
Transactional	COBOL	and	Java	Code	in	Java	EE	Web	Applications	
using	Open	Source	Software.	International	Conference	on	Web	
Information	Systems	and	Technologies.	
https://doi.org/10.5220/0006943402390246	

Explores	a	hybrid	approach	for	migrating	
COBOL	to	Java	and	the	role	of	open-source	
software.	

Knoche,	H.,	&	Hasselbring,	W.	(2018).	Using	microservices	for	legacy	
software	modernization.	IEEE	Software,	35(3),	44–49.	
https://doi.org/10.1109/ms.2018.2141035	

Investigates	the	role	of	microservices	in	
modernizing	legacy	software,	which	is	
relevant	to	COBOL	migration.	

Markus,	S.,	&	Streit,	J.	(2021).	Efficient	Platform	Migration	of	a	
Mainframe	Legacy	System	Using	Custom	Transpilation.	IEEE	
International	Conference	on	Software	Maintenance	and	Evolution	
(ICSME),.	
https://doi.org/10.26226/morressier.613b5419842293c031b5b64a	

Discusses	efficient	platform	migration	
from	mainframe	systems,	applicable	to	
COBOL	migrations.	

Brüne,	P.	(2019).	An	open	source	approach	for	modernizing	
Message-Processing	and	transactional	COBOL	applications	by	
integration	in	Java	EE	application	servers.	In	Lecture	notes	in	
business	information	processing.	https://doi.org/10.1007/978-3-
030-35330-8_12	

Provides	insights	into	open-source	
methods	for	modernizing	COBOL	
applications	in	Java	EE	servers.	

Strobl,	S.,	Zoffi,	C.,	Haselmann,	C.,	Bernhart,	M.,	&	Grechenig,	T.	
(2020).	Automated	Code	Transformations:	Dealing	with	the	
Aftermath.	2020	IEEE	27th	International	Conference	on	Software	
Analysis,	Evolution	and	Reengineering	(SANER).	
https://doi.org/10.1109/saner48275.2020.9054813	

Addresses	automated	code	
transformations,	which	may	apply	to	post-
migration	code	adjustments.	

Flores-Ruiz,	S.,	Pérez-Castillo,	R.,	Domann,	C.,	&	Puica,	S.	(2018).	
Mainframe	Migration	Based	on	Screen	Scraping.	IEEE	International	
Conference	on	Software	Maintenance	and	Evolution	(ICSME).	
https://doi.org/10.1109/icsme.2018.00077	

Discusses	mainframe	migration	using	
screen	scraping	techniques,	which	could	
be	relevant	to	COBOL	migration.	

Mateos,	C.,	Zunino,	A.,	Flores,	A.,	&	Misra,	S.	(2019).	COBOL	Systems	
Migration	to	SOA:	Assessing	antipatterns	and	complexity.	
Information	Technology	and	Control,	48(1).	
https://doi.org/10.5755/j01.itc.48.1.21566	

Focuses	on	assessing	migration	challenges	
and	complexity,	which	is	relevant	to	
COBOL-to-Java	migration.	

Strobl,	S.,	Bernhart,	M.,	&	Grechenig,	T.	(2020).	Towards	a	Topology	
for	Legacy	System	Migration.	Proceedings	of	the	IEEE/ACM	42nd	
International	Conference	on	Software	Engineering	Workshops.	
https://doi.org/10.1145/3387940.3391476	

Proposes	a	topology	for	migrating	legacy	
systems,	which	may	offer	insights	into	
structured	migration	approaches.	

Sneed,	H.	M.,	&	Verhoef,	C.	(2020).	Cost-driven	software	migration:	
an	experience	report.	Journal	of	Software:	Evolution	and	Process,	
32(7).	https://doi.org/10.1002/smr.2236	

Shares	experiences	related	to	cost-driven	
software	migration,	which	can	provide	
practical	insights	for	COBOL	migration.	

Sneed,	H.	M.,	&	Verhoef,	C.	(2019).	Re-implementing	a	legacy	system.	
Journal	of	Systems	and	Software,	155,	162–184.	
https://doi.org/10.1016/j.jss.2019.05.012	

Discusses	the	re-implementation	of	legacy	
systems,	which	could	be	relevant	to	
COBOL	migration.	

	 	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

69	
	

2. COBOL	to	Python	
Paper	Title	 Key	Findings	and	Relevance	to	Thesis	
O’Hara,	S.	(2018).	Improving	programming	language	
transformation.	In	Proceedings	of	the	International	
Conference	on	Software	Engineering	Research	and	
Practice	(SERP).	The	Steering	Committee	of	The	World	
Congress	in	Computer	Science,	Computer	(pp.	129-
135).	

Discusses	language	transformation	and	its	relevance	to	
COBOL-to-Python	migration.	

Lachaux,	M.,	Rozière,	B.,	Chanussot,	L.,	&	Lample,	G.	
(z.d.).	Unsupervised	Translation	of	Programming	
Languages.	arXiv	(Cornell	University).	
http://export.arxiv.org/pdf/2006.03511	

Addresses	unsupervised	code	translation,	which	is	
important	for	migration	to	Python.	

Roziere,	B.,	Zhang,	J.	M.,	Charton,	F.,	Harman,	M.,	
Synnaeve,	G.,	&	Lample,	G.	(2021).	Leveraging	
automated	unit	tests	for	unsupervised	code	translation.	
arXiv	preprint	arXiv:2110.06773.	

Investigates	the	use	of	automated	unit	tests	in	code	
translation,	which	can	streamline	migration.	

Malyala,	A.,	Zhou,	K.,	Ray,	B.,	&	Chakraborty,	S.	(2023).	
On	ML-Based	Program	Translation:	Perils	and	
Promises.	arXiv	preprint	arXiv:2302.10812.	

Discusses	machine	learning-based	program	translation	
and	its	potential	challenges	and	benefits	for	migration.	

Kulshrestha,	A.,	&	Lele,	V.	(2022).	Cobol2Vec:	Learning	
Representations	of	Cobol	code.	arXiv	preprint	
arXiv:2201.09448.	

Focuses	on	learning	representations	of	COBOL	code,	
which	is	relevant	for	understanding	code	translation.	

Surianarayanan,	C.,	Chelliah,	P.	R.,	Surianarayanan,	C.,	&	
Chelliah,	P.	R.	(2019).	Cloud	Migration.	Essentials	of	
Cloud	Computing:	A	Holistic	Perspective,	221-240.	

Discusses	cloud	migration,	which	can	be	part	of	the	
modernization	process	in	COBOL-to-Python	migration.	

LEONIDA,	J.	(2021).	LANGUAGE	PORTING	IN	
COMPUTING.	

Discusses	language	porting,	which	is	an	essential	aspect	
of	code	migration.	

Weisz,	J.	D.,	Muller,	M.,	Houde,	S.,	Richards,	J.,	Ross,	S.	I.,	
Martinez,	F.,	...	&	Talamadupula,	K.	(2021,	April).	
Perfection	not	required?	Human-AI	partnerships	in	
code	translation.	In	26th	International	Conference	on	
Intelligent	User	Interfaces	(pp.	402-412).	

Addresses	the	role	of	human-AI	partnerships	in	code	
translation,	which	may	be	relevant	to	code	migration	
projects.	

	
	
3. COBOL	to	C#	
Paper	Title	 Key	Findings	and	Relevance	to	Thesis	
Yousif,	H.	S.	(2018).	CFlat:	An	Intermediate	
Representation	Language	for	the	Purpose	of	Software	
Migration	to	Java	and	C#	(master’s	thesis,	The	
University	of	Bergen).	

Explores	an	intermediate	representation	language	for	
migrating	to	Java	and	C#.	

Mateos,	C.,	Zunino,	A.,	Flores,	A.,	&	Misra,	S.	(2019).	
Cobol	systems	migration	to	SOA:	assessing	antipatterns	
and	complexity.	Information	Technology	and	Control,	
48(1),	71-89.	

Discusses	the	assessment	of	antipatterns	and	
complexity	in	migration,	relevant	to	COBOL-to-C#	
migration.	Addresses	the	assessment	of	antipatterns	
and	complexity	in	migrating	from	COBOL	to	SOA,	which	
may	have	implications	for	C#	migration.	

Włodarski,	L.,	Pereira,	B.,	Povazan,	I.,	Fabry,	J.,	&	
Zaytsev,	V.	(2019,	February).	Qualify	first!	a	large	scale	
modernisation	report.	In	2019	IEEE	26th	International	
Conference	on	Software	Analysis,	Evolution	and	
Reengineering	(SANER)	(pp.	569-573).	IEEE.	

Discusses	the	importance	of	qualification	and	
assessment	in	large-scale	modernization	projects,	
which	is	pertinent	to	COBOL-to-C#	migration.	

Ali,	M.	S.,	Manjunath,	N.,	&	Chimalakonda,	S.	(2023).	X-
COBOL:	A	Dataset	of	COBOL	Repositories.	arXiv	
preprint	arXiv:2306.04892.	

Discusses	the	availability	of	COBOL	repositories,	which	
can	be	valuable	in	understanding	and	accessing	COBOL	
code	for	migration.	

Ciborowska,	A.,	Chakarov,	A.,	&	Pandita,	R.	(2021,	
September).	Contemporary	COBOL:	developers'	
perspectives	on	defects	and	defect	location.	In	2021	
IEEE	International	Conference	on	Software	Maintenance	
and	Evolution	(ICSME)	(pp.	227-238).	IEEE.	

Investigates	developers'	perspectives	on	defects	in	
contemporary	COBOL,	which	can	be	relevant	to	quality	
assurance	in	migration.	

Strobl,	S.,	Zoffi,	C.,	Haselmann,	C.,	Bernhart,	M.,	&	
Grechenig,	T.	(2020,	February).	Automated	Code	
Transformations:	Dealing	with	the	Aftermath.	In	2020	
IEEE	27th	International	Conference	on	Software	
Analysis,	Evolution	and	Reengineering	(SANER)	(pp.	
627-631).	IEEE.	

Addresses	automated	code	transformations,	including	
handling	the	aftermath	of	code	changes,	which	is	
relevant	to	post-migration	adjustments.	

	
	

70	
	

	
4. COBOL	to	Scala	
Paper	Title	 Key	Findings	and	Relevance	to	Thesis	
Espada,	G.	J.	N.	M.	(2020).	Automatic	conversion	of	ADA	
source	code	to	scala	(Doctoral	dissertation).	

Discusses	automatic	code	conversion,	which	may	apply	
to	COBOL-to-Scala	migration.	

Mateus,	B.	G.,	Martinez,	M.,	&	Kolski,	C.	(2023).	Learning	
migration	models	for	supporting	incremental	language	
migrations	of	software	applications.	Information	and	
Software	Technology,	153,	107082.	

Addresses	learning	migration	models	for	incremental	
language	migrations,	which	is	pertinent	to	COBOL-to-
Scala	migration.	

Roziere,	B.,	Zhang,	J.	M.,	Charton,	F.,	Harman,	M.,	
Synnaeve,	G.,	&	Lample,	G.	(2021).	Leveraging	
automated	unit	tests	for	unsupervised	code	translation.	
arXiv	preprint	arXiv:2110.06773.	

Investigates	the	use	of	automated	unit	tests	in	
unsupervised	code	translation,	which	can	streamline	
migration	to	Scala.	

Abid,	C.,	Alizadeh,	V.,	Kessentini,	M.,	Ferreira,	T.	D.	N.,	&	
Dig,	D.	(2020).	30	years	of	software	refactoring	
research:	A	systematic	literature	review.	arXiv	preprint	
arXiv:2007.02194.	

Discusses	30	years	of	software	refactoring	research,	
providing	insights	into	the	importance	of	refactoring	
during	migration.	

Zaytsev,	V.	(2020,	November).	Software	language	
engineers’	worst	nightmare.	In	Proceedings	of	the	13th	
ACM	SIGPLAN	International	Conference	on	Software	
Language	Engineering	(pp.	72-85).	

Discusses	challenges	faced	by	software	language	
engineers,	which	may	offer	insights	into	potential	
pitfalls	during	language	migration.	

Yan,	W.,	Tian,	Y.,	Li,	Y.,	Chen,	Q.,	&	Wang,	W.	(2023).	
CodeTransOcean:	A	Comprehensive	Multilingual	
Benchmark	for	Code	Translation.	arXiv	preprint	
arXiv:2310.04951.	

Presents	a	comprehensive	benchmark	for	code	
translation,	which	can	be	valuable	for	evaluating	the	
effectiveness	of	translation	in	COBOL-to-Scala	
migration.	

Petrulio,	F.,	Sawant,	A.	A.,	&	Bacchelli,	A.	(2021).	The	
indolent	lambdification	of	Java:	Understanding	the	
support	for	lambda	expressions	in	the	Java	ecosystem.	
Empirical	Software	Engineering,	26,	1-36.	

Explores	the	support	for	lambda	expressions	in	the	Java	
ecosystem,	which	is	relevant	when	migrating	to	Java	as	
an	intermediate	step	before	Scala.	

Royal,	P.	(2022).	Building	with	Modern	Spring,	Java,	and	
PostgreSQL.	In	Building	Modern	Business	Applications:	
Reactive	Cloud	Architecture	for	Java,	Spring,	and	
PostgreSQL	(pp.	147-162).	Berkeley,	CA:	Apress.	

Discusses	building	applications	with	modern	Spring,	
Java,	and	PostgreSQL,	which	can	be	pertinent	to	a	
migration	path	involving	these	technologies.	

Smith,	T.	C.,	&	Jones,	L.	(2021).	First	Course	
Programming	Languages	within	US	Business	College	
MIS	Curricula.	Journal	of	Information	Systems	
Education,	32(4),	283-293.	

Investigates	the	use	of	programming	languages	in	
business	college	MIS	curricula,	which	may	provide	
insights	into	the	educational	aspects	of	language	
migration.	

	
Appendix	7:	Installation	failure	TN3270	terminal	emulator		

	
	
Failure	of	TN3270	terminal	emulator	due	to	no	update	for	the	most	recent	version	of	macOS.	
TN3270.		
	
	

	
	

71	
	

	
Appendix	8:	COBOL	jobs	in	the	Netherlands		
Job	title	 Company	 Salary	per	month	in	euros	
Cobol	Ontwikkelaar	(cics	DB2)	 De	Belastingdienst	 3608-5503	
Backend	test	automation	
engineer	

De	Belastingdienst	 3045-4848	

COBOL	Developer	 Personeel	Specialisten	 3000-4500	
COBOL	applicatie	
ontwikkelaar	

SVB	 5737	

Cobol	Developer	 Ordina	 N/A	
Test	specialist	Cobol	
Mainframe	

SVB	 5073	

Cobol	Developer	 Experis	 3500-5500	
Cobol	Developer	 ABN	AMRO		 4400-5500	
Junior	IT	Engineer	Cross	
Border	

ABN	AMRO	 3741-5345	

IT	Engineer	Cross	Border	 ABN	AMRO		 4213-6019	
Applicatie	consultant	 Capgemini	 N/A	
Junior	Mainframe	developer	 Experis	 3000-3500	
DBA	DB2	mainframe	 De	Belastingdienst	 3608-6227	
DevOps	engineer	Mainframe	 De	Belastingdienst	 3608-5503	
COBOL	ontwikkelaar	 Red	Carpet	IT	Services	 N/A	
Mainframe	Specialist	 Teelor	 N/A	
SAS	Developer	 Gazelle	Global	Consulting	 N/A	
Transportplanner	 Tata	Steel	Netherlands	 5442	
Senior	COBOL	
ontwerper/ontwikkelaar	

Inter-Sprint	Banden	 N/A	

COBOL	Developer	 Personeel	Specialisten	 3000-4500	
Functioneel	Ontwerper	bij	
Mainmen	

Sterksen	 N/A	

Mainframe	project	manager	 Axiom	Software	Solutions	 N/A	
Senior	tester	
(cobol/mainframe	omgeving)	

Seven	starts	 N/A	

	
Cobol	related	jobs	retrieved	from	Indeed.com	as	per	November	20.	Please	be	aware	that	some	
positions	may	no	longer	be	accessible,	as	they	can	be	removed	once	they	are	occupied	or	no	
longer	open	for	applications.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

72	
	

	
Appendix	9:	Educational	resources	
YouTube	 COBOL	Tutorial:	Learn	COBOL	in	One	Video	

https://www.youtube.com/watch?v=TBs7HXI76yU&t=40s	
channel:	Derek	Banas	
Date:	2020	

COBOL	Programming	Tutorial:	From	Basics	to	Advanced	|Best	COBOL	Course	|	Learn	
COBOL	Programming.	
https://www.youtube.com/watch?v=cnz9y9k2jvs&t=2814s	
Channel:	Topic	Trick	
Date	published:	2023	
	
COBOL	Course	-	Programming	with	VSCode	
https://www.youtube.com/watch?v=RdMAEdGvtLA	
Channel:	FreeCodeCamp.org	
Date	published:	2020	
	

Udemy	 Mainframe:	The	Complete	COBOL	Course	From	Beginner	To	Expert	
https://www.udemy.com/share/101ZCS3@nAcPFkFR5AO1eOiQt_W5dVzP0cH42vW
w99qwN0J2yMBytZQkJdoYK4KpIsMNH3yG/	
Author:	Sandeep	Kumar	
Last	update:	05/2022	
COBOL	Complete	Reference	Course!	
https://www.udemy.com/share/108BJm3@WSz5dXExIqk8oku2NSjb9yWsXoLilyn9
4a3u8izdW9aLqJIii-jltUQXAymO5fvK/	
Author:	Toptrick	Education	
Last	update:04/2023	
Mainframe	COBOL	Developer	Training	By	Anil	Polsani	
https://www.udemy.com/share/107FWK3@QPujpJuuf4eaLD9GvKHXr8k0nqAyoYa_
Z1mBabTRsx5CG5tfz-ivOeRfySnb0DgG/	
Author:	Anil	Polsani	
Last	update:	11/2022	
The	complete	Mainframe	Professional	Course	-4	Clurses	in	1	
https://www.udemy.com/share/101Ym83@VN5UXKMzSpmJnp9QCFLDiI4o32P95g
g5WjEEWNxDdhX5N2AfQYOTCiif-yi7Y46Y/	
Author	Rathi	
Last	update:10/2023	

GitHub	 https://github.com/neopragma/COBOL-samples/tree/main/src/main/COBOL	
https://github.com/ashish27081998/COBOL_test_Programs.git	
https://github.com/moderneinc/cobol-samples.git	

Overall	 https://ibmmainframes.com/programs.php	
https://www.infogoal.com/cbd/cobol_example_code_programs.htm	
	

	
	

https://www.youtube.com/watch?v=TBs7HXI76yU&t=40s
https://www.youtube.com/watch?v=cnz9y9k2jvs&t=2814s
https://www.youtube.com/watch?v=RdMAEdGvtLA
https://www.udemy.com/share/101ZCS3@nAcPFkFR5AO1eOiQt_W5dVzP0cH42vWw99qwN0J2yMBytZQkJdoYK4KpIsMNH3yG/
https://www.udemy.com/share/101ZCS3@nAcPFkFR5AO1eOiQt_W5dVzP0cH42vWw99qwN0J2yMBytZQkJdoYK4KpIsMNH3yG/
https://github.com/neopragma/cobol-samples/tree/main/src/main/cobol
https://github.com/ashish27081998/Cobol_test_Programs.git
https://github.com/moderneinc/cobol-samples.git
https://ibmmainframes.com/programs.php
https://www.infogoal.com/cbd/cobol_example_code_programs.htm

